DENR USE ONLY: Paper R	eport □Electronic Data - Er	mail CD (data loaded: Yo	es / No) Doc/	Event #:
NC DENR Division of Waste Manager	ment - Solid Waste		En	vironmental Monitoring
Notice: This form and any inform available for inspection and exam	ation attached to it are "Public Rination by any person upon requ	Records" as defined in N est (NC General Statute	C General Statute 132-1. e 132-6).	As such, these documents are
 Please type or print le Attach a notification tab must include a prelimina condition, etc.). Attach a notification tab Attach a notification tab facility (NCAC 13B .162 Send the original signe 	ole with values that attain or exce ary analysis of the cause and sig le of any groundwater or surface le of any methane gas values th 19 (4)(a)(i).	eed NC 2L groundwater inificance of each value. water values that equal at attain or exceed expl and Electronic Data Delii	(e.g. naturally occurring, of or exceed the reporting linus osive gas levels. This inc	53.0
Solid Waste Monitoring D Name of entity submitting data S&ME, Inc.	ata Submittal Informatio (laboratory, consultant, facility	on r owner):		
Contact for questions about dat Name: Edmund Henriques	a formatting. Include data pre			Idress:
E-mail: ehenriques@smeinc.cor	n	Phone: <u>336-288-71</u>	80	<u> </u>
Facility name:	Facility Address:	Facility P	NC Landfill Rul ermit # (.0500 or .1600	
White Street Landfill - Phase I	North end of White Street, Gre	eensboro, 41-03	Not Applicable	October 6-8, 2016
Environmental Status: (Check a Initial/Background Monitori		ring Asse	ssment Monitoring	Corrective Action
Type of data submitted: (Check and a submitted: Check and a submitte	ata from monitoring wells ata from private water supply wel		gas monitoring data e action data (specify) ecify)	
Notification attached?				

x

No. No groundwater or surface water standards were exceeded.

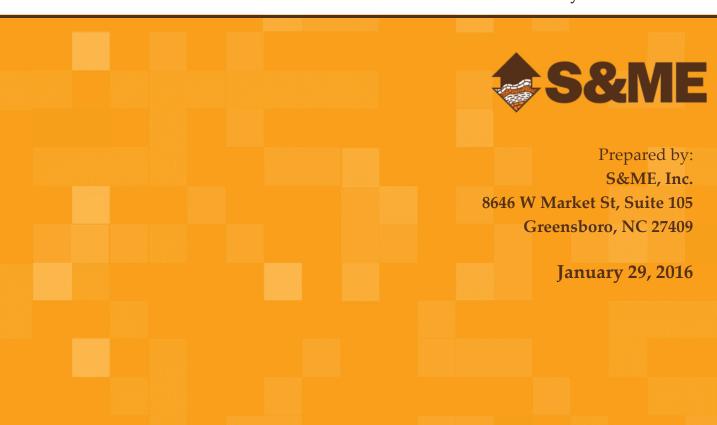
Yes, a notification of values exceeding a groundwater or surface water standard is attached. It includes a list of groundwater and surface water monitoring points, dates, analytical values, NC 2L groundwater standard, NC 2B surface water standard or NC Solid Waste GWPS and preliminary analysis of the cause and significance of any concentration.

Yes, a notification of values exceeding an explosive methane gas limit is attached. It includes the methane monitoring points, dates, sample values and explosive methane gas limits.

Certification

To the best of my knowledge, the information reported and statements made on this data submittal and attachments are true and correct. Furthermore, I have attached complete notification of any sampling values meeting or exceeding groundwater standards or explosive gas levels, and a preliminary analysis of the cause and significance of concentrations exceeding groundwater standards. I am aware that there are significant penalties for making any false statement, representation, or certification including the possibility of a fine and imprison

Edmund Q.B. Henriques	Senior Geolog	gist / Project Manager	336-288-7180
Facility Representative Name (Print)	Title		(Area Code) Telephone Number 1 100 100 100 100 100 100 100 100 100
Echnund O.3. Gerrigu	<u></u>	1/29/2016	Affix NC Licensed/ Professional Geologist Seal
Signature		Date	TOENS OF THE
8646 Market Street, Suite 105, Greensboro,	NC 27409		SEAL


Facility Representative Address

NC PE Firm License Number (if applicable effective May 1, 2009)

Revised 6/2009

White Street Landfill - Phase I Permit # 41-03 Post-Closure Monitoring October 2015 Greensboro North Carolina S&ME Project No. 1584-98-081C

Prepared for: The City of Greensboro

Table of Contents

1.0	Executive Summary1
2.0	Introduction2
3.0	Scope Of Work
4.0	Methods Employed2
4.1	Monitoring Well Sampling2
4.2	Stream Sampling3
5.0	Results4
5.1	Groundwater Analytical Results4
5.2	Groundwater Flow Direction4
5.3	Surface Water5
5.4	Quality Assurance5
6.0	References
7.0	Certification6
TABLE	is s
Table 1	
Table 2	
Table 4	•
Table !	·
Table (5: Summary of 2B Surface Water Standard - Exceedances
FIGUR	ES
Figure	·
Figure	2: Stream Sample Location
	NDICES
Apper	. 9
Apper	
Apper	ndix III: NCDEQ EDDs (CD only)

1.0 Executive Summary

Five monitoring wells and five stream locations at Phase I of the White Street Landfill were sampled between October 6, 2015 and October 8, 2015. Five wells (I-1, I-2, I-3, I-4 and MW-13) comprise the groundwater monitoring system for the closed Phase I portion of the White Street Landfill. Monitoring well MW-13 serves as a background well for both the Phase I and the Phase II areas. The sampling was conducted according to North Carolina Solid Waste Management Guidelines and samples were analyzed by a North Carolina certified laboratory.

Analytical results from the five Phase I monitoring wells indicate that the following NCAC 2L groundwater quality standards were exceeded.

- Benzene was detected at 3.3 μ g/L at well I-1 which exceeds the 15A NCAC 2L groundwater standard (2L Standard) of 1 μ g/L.
- Vinyl Chloride was detected at estimated concentrations of 0.65 μ g/L and 0.59 μ g/L at wells I-2 and I-3, respectively; concentrations that exceed the 2L Standard of 0.03 μ g/L.
- Cadmium was detected at 3.80 μg/L at well I-4 which exceeds the 2L Standard of 2 μg/L.
- Chromium was detected at 29.9 µg/L at well I-2 which exceeds the 2L Standard of 10 µg/L.

With regards to surface water sampling, both volatile organic constituents and inorganic constituents were detected at one or more sampled locations. No reported concentrations were greater than the corresponding NCAC 2B surface water standards or criteria except for chromium, cobalt, copper, lead, silver, and zinc. Analytical results for surface water samples collected up-stream of the White Street Landfill also exhibited concentrations of these metals. Water quality immediately down-stream of Phase I reported no 2B Standard exceedance. In contrast, higher concentrations were reported further down-stream of the facility in a stream segment potentially influenced by other sources. In view of this and extensive prior surface water and groundwater monitoring data, the landfill including Phase I is not considered to be the source of these constituents, or the cause for the apparent exceedances of the 2B Standards.

It is believed that the cause of the benzene and vinyl chloride 2L Standard exceedances within the hydrogeologic regime at Phase I is from percolation of landfill constituents from the waste management unit into the uppermost groundwater aquifer. Based on historic groundwater monitoring data and an assessment of naturally occurring metals in adjacent Phase II soils, the reported concentrations of cadmium and chromium are thought to represent a natural occurrence in local groundwater and/or colloidal solids in the groundwater samples, thus the concentration reported is not thought to indicate a release from the Phase I waste management unit.

Monitoring well I-1 reported to contain 2L Standard exceedances is located less than 100 feet from the limit of waste, and between the limits of waste and the compliance boundary. The City of Greensboro believes that Phase I of the White Street Landfill was closed prior to January 1, 1983, and as such, assessment and cleanup of this landfill unit should fall under jurisdiction of the NCDENR Inactive Hazardous Sites program Pre-Regulatory Landfill Unit, for "orphan landfills."

2.0 Introduction

White Street Landfill is a Solid Waste Management Facility (SWMF) located at the north end of White Street in northeastern Greensboro. S&ME, Inc. (S&ME) was contracted by the City of Greensboro to complete this water quality monitoring event. Phase I of the landfill is a closed unit, reportedly covered by Solid Waste Permit #41-03, which also covers Phase II of the Facility. **Figure 1** is a map showing the monitor well locations. One up-gradient and four down-gradient monitoring wells located along the perimeter of the closed Phase I disposal area were sampled. Five surface water samples were collected from North Buffalo Creek and one of its tributaries in the vicinity of the White Street facility. Phase I shares the surface water sampling locations with adjacent Phase II.

The samples collected from Phase I monitoring wells I-1, I-2, I-3, and I-4, were analyzed for **Appendix I** volatile organic constituents and the eight RCRA metals. Since background monitoring well MW-13 is shared with Phase II, the collected sample was analyzed for **Appendix II** constituents. This report discusses the field procedures, summarizes the field measurements and analytical results for the post-closure monitoring event completed during October 2015.

3.0 Scope Of Work

To complete the scope of work, S&ME completed the following tasks:

- Sampled five monitoring wells and five surface water locations.
- Obtained field values for pH, temperature, conductivity, dissolved oxygen (DO), oxidationreduction potential (ORP), and turbidity at each sampled monitoring well location.
- Depths to water measurements were collected prior to sampling and during well purging to monitor drawdown.
- Groundwater samples I-1, I-2, I-3, and I-4, were analyzed for Appendix I organic constituents and
 8-RCRA metals by a North Carolina certified laboratory, using State approved methods.
- Groundwater sample MW-13 was analyzed for **Appendix II** constituents by a North Carolina certified laboratory, using State approved methods.
- Surface water samples SW-1, SW-2, SW-3, SW-4 and SW-5 were analyzed for Appendix I constituents by a North Carolina certified laboratory, using State approved methods.
- Estimated groundwater flow directions for the Phase I area.
- Prepared and submitted this Post-Closure Monitoring Report to the City of Greensboro and the State.

4.0 Methods Employed

4.1 Monitoring Well Sampling

Phase I groundwater monitoring well sampling took place between October 6, and October 7, 2015, with shared background monitoring well MW-13 sampled on October 8, 2015. The monitoring well locations are shown on **Figure 1**. A representative from S&ME opened each well and measured the static water level from the top edge of the PVC casing in wells. The total well depth sounding data reported for the sampling events completed during September 1997 and May 1998 were used to determine the volume of

water in wells I-1, I-2, I-3, I-4 and MW-13, where dedicated MicroPurge[™] pumps had been previously installed. **Table 1** provides a summary of relevant well construction details.

In accordance with the facility's approved Water Quality Monitoring Plan, each well was purged using the dedicated MicroPurge™ pumps using compressed air. At each well, the purge rate and the drawdown of the water table were monitored as an indicator of how much stress the purging placed on the aquifer. The purge rates were calculated by recording the time required to fill a graduated cylinder. The purging flow rates varied but were approximately 100 milliliters/minute (ml/min.). During purging, the depth to water was periodically monitored and recorded on the groundwater sampling field data sheets.

It is our opinion that the observed drawdowns were generally minor during purging; therefore, the stresses placed on the aquifer should have been insignificant. The observed drawdown data suggests that the purging rates should have been low enough such that recharge water should not have been overly agitated, reducing the potential for colloids to be drawn into the well bore.

The purge water from each of these wells was monitored for pH, temperature, conductivity, DO, ORP and turbidity. The time interval between measurements approximated one equipment volume, at a minimum. Sample collection was commenced when the changes in those readings fluctuated no more than 10 percent and utilizing a turbidity goal of 10 NTU, or less. Despite the use of low flow methods, turbidity values remain higher than ideal or increased during the purging of wells I-2 and I-4; therefore, samples were collected without meeting the turbidity goal, relying upon professional judgement. The field data collected during sampling was recorded on the groundwater sampling field data sheets, included in **Appendix I**. **Table 2** provides a summary of the field data collected during this event.

Groundwater samples were collected from dedicated pump discharge Teflon tubing at the top of each well. Immediately upon collection, each sample was placed in laboratory supplied containers and placed in a cooler with ice. The sampler wore nitrile gloves that were changed between wells to reduce the possibility of cross contamination. Upon collection, the groundwater samples were maintained under chain-of custody.

Phase I monitoring well samples I-1, I-2, I-3 and I-4 were analyzed for **Appendix I** volatile organic constituents and the eight RCRA metals. Since background well MW-13 is shared with Phase II, the collected sample was analyzed for **Appendix II** constituents. Analyses were conducted by Environmental Conservation Laboratories, a North Carolina certified laboratory.

4.2 Stream Sampling

Surface water sampling took place on October 7, 2015. Surface water SW-1 was collected from North Buffalo Creek on the west side of the U.S. Highway 29 bridge upstream of the landfill. Surface water SW-2 was collected from a southern tributary of North Buffalo Creek just before it joins the main creek west of the landfill entrance. SW-3 was collected from North Buffalo Creek downstream of the North Buffalo Wastewater Treatment Plant outfall and upstream of the landfill. SW-4 was collected from North Buffalo Creek downstream of the landfill at a USGS gauging station located on North Buffalo Creek about three-quarters of a mile north of the landfill. SW-5 was collected from North Buffalo Creek immediately downstream of the Phase I and II landfill disposal areas. The locations are shown in **Figure 2**.

The surface water samples were collected by immersing laboratory supplied containers in the water to be sampled. After collection, the surface water samples were placed in a cooler with ice and placed under chain-of-custody. Each surface water sample was analyzed for **Appendix I** inorganic and volatile organic constituents by Environmental Conservation Laboratories; a North Carolina certified laboratory.

5.0 Results

5.1 Groundwater Analytical Results

Table 3 provides a summary of the constituent concentrations reported above the method detection limit (MDL) for the groundwater samples collected. Concentrations reported between the MDL and the Solid Waste Section Limits (SWSL) are considered estimated, thus shown as a "J" flagged concentration. **Table 4** provides a summary of the reported concentrations which exceed the 15A NCAC 2L Standards (2L Standard). For some constituents where there is no established 2L Standard, North Carolina has published Interim Maximum Allowable Concentrations (IMACs). The IMAC values are intended to help NCDENR in assessing conditions and setting health protective groundwater levels at regulated sites. As such the IMAC are only interim and not final groundwater quality standards. The following summarizes the exceedances of the corresponding 2L Standard or IMAC.

- Benzene was detected at 3.3 μ g/L at well I-1 which exceeds the 15A NCAC 2L groundwater standard (2L Standard) of 1 μ g/L.
- Vinyl Chloride was detected at estimated concentrations of 0.65 μ g/L and 0.59 μ g/L at wells I-2 and I-3, respectively; concentrations that exceed the 2L Standard of 0.03 μ g/L.
- Cadmium was detected at 3.80 μg/L at well I-4 which exceeds the 2L Standard of 2 μg/L.
- Chromium was detected at 29.9 μg/L at well I-2 which exceeds the 2L Standard of 10 μg/L.
- At monitoring well MW-13 vanadium was detected at an estimated concentration of 4.71 μg/L, which is similar to prior reported concentrations. This concentration is greater than the IMAC for vanadium. Monitoring well MW-13 is a background monitoring well for Phase I and II. The detected concentration is considered to represent natural background groundwater quality. As a natural condition, it would not represent an exceedance of the IMAC standard.

The complete laboratory analytical reports are included in **Appendix II**. Analytical results in the NCDENR EDD format are contained in **Appendix III** (CD only).

5.2 Groundwater Flow Direction

The static water levels in the four Phase I monitoring wells were measured between October 6 and October 7, 2015, while background monitoring well MW-13 was measured on October 8, 2015. The depths to the water table ranged from 2.57 to 18.01 feet below the top of well casings on these dates. Groundwater and well casing elevation data are presented in **Table 1**. A groundwater contour map constructed using the data collected during this monitoring event is presented as **Figure 1**. The groundwater elevation data collected during this monitoring event indicates that the groundwater beneath Phase I generally flows to the north toward Buffalo Creek.

5.3 Surface Water

Table 5 provides a summary of the constituent concentrations reported above the method detection limit (MDL) for the surface water samples collected. Concentrations reported between the MDL and the Solid Waste Section Limits (SWSL) are considered estimated, thus shown as a "J" flagged concentration. **Table 6** provides a summary of the reported concentrations which exceed the corresponding 15A NCAC 2B Standard (2B Standard). The following summarizes the exceedances of the 2B Standards. The complete laboratory analytical report is included in **Appendix II**.

- Cobalt, copper, and zinc were detected at concentrations greater than the corresponding 2B Standard in sample SW-1.
- Silver was detected at a concentration greater than the 2B Standard Action Level in sample SW-3.
- Chromium, cobalt, copper, lead, silver, and zinc were detected at concentrations greater than the corresponding 2B Standard or Action Levels in sample SW-4.

Surface water sample location SW-1 is up-stream of the facility. Sample location SW-5 is down-stream of Phase I with analytical results reporting no 2B Standard exceedance. In contrast, sample location SW-4 is even further down-stream of the facility, and along a stream segment potentially influenced by other sources. Considering the upstream data, giving greater weight to the analytical results for sample SW-5 located immediately down-stream of Phase I, and giving less weight to the analytical results for sample SW-4, Phase I are not believed to be the cause for the apparent exceedances of the 2B Standards.

5.4 Quality Assurance

A qualitative review of the data was performed to verify that the detected concentrations in the laboratory report were of known quality. A formal, quantitative data validation was not performed. Laboratory-assigned data qualifiers were evaluated to verify that rejected or unsupportable data were not included in the dataset. Quality control data provided in the laboratory reports were also reviewed. No rejected or otherwise unacceptable quality data were reported from the laboratory.

The monitoring wells in Phase I were sampled using dedicated micro-purge pumps. Therefore, no equipment rinse samples were collected for analysis for data quality control. Trip blank samples accompanied the sample bottles from the time they left the laboratory until they returned. The trip blank samples were analyzed for **Appendix I** volatile organic constituents. No volatile organic constituents were present in the trip blank samples at detectable levels. Laboratory QC samples were analyzed for all constituents included in this sampling event. The results of the trip blank and laboratory QC sample analyses are included in **Appendix II**.

6.0 References

Fetter, C. W., 1988, Applied Hydrogeology, New York; Macmillian Publishing Company, 1988, 592 pp.

North Carolina Administrative Code, Title 15A, Department of Environment, Health and Natural Resources, Division of Environmental Management, Subchapter 2L, Classifications and Water Quality Standards Applicable to the Groundwaters of North Carolina, Sections .0100, .0200, and .0300; from the Environmental Management Commission Raleigh, North Carolina.

North Carolina Administrative Code, Title 15A, Department of Environment, Health and Natural Resources, Division of Environmental Management, Subchapter 2B, Classifications and Water Quality Standards Applicable to the Surface Waters of North Carolina, Section .0200; from the Environmental Management Commission, Raleigh, North Carolina.

North Carolina Administrative Code, Title 15A, Department of Environment, Health and Natural Resources, Division of Solid Waste Management, subchapter 13B, Solid Waste Management, Section .1600.

7.0 Certification

I hereby certify this 29th day of January 2016 that this report was prepared by me or under my direct supervision.

Elmind Co.B. Henrique

Edmund Q.B. Henriques, L.G. Senior Geologist / Project Manager

Mark Bloom

Technical support provided by:

Amanda Bloom Staff Professional

TABLE 1 WELL CONSTRUCTION AND GROUNDWATER ELEVATION DATA PHASE 1 - PERMIT # 41-03 WHITE STREET LANDFILL GREENSBORO, NORTH CAROLINA S&ME PROJECT NO. 1584-98-081C

Well ID	Date Installed	Total Depth (feet)	Well Diameter (inches)	Depth to Top of Screen (feet)	Well Screen Interval (feet bgs)	Geology of Screened Interval	Northing NAD 83	Easting NAD 83	Ground Elevation NAVD 88 (feet msl.)	Top of Casing Elevation NAVD 88 (feet msl.)	Depth to Groundwater ¹ October 2015 (feet)	Groundwater Elevation October 2015 (feet msl.)
I-1	7/14/1989	24	2	14	14 - 24	partially weather rock	1785583.98	859726.77	not measured	713.75	8.45	705.30
I-2	7/14/1989	24	2	14	14 - 24	sandy silt	1785319.23	860640.98	not measured	703.09	5.21	697.88
I-3	7/14/1989	24	2	14	14 - 24	sandy silt	1785334.06	861315.16	not measured	707.43	14.01	693.42
1-4	7/14/1989	15	2	5	5 -15	sandy silt saprolite	1786167.37	861969.09	not measured	694.94	2.57	692.37
MW-13	7/14/1989	34	2	19	19 - 34	sandy silt saprolite	1783166.56	858751.94	not measured	741.24	18.01	723.23

City of Greensboro provided the top of casing elevations and ground surface elevations

Well Construction details obtained from Well Construction Records reported by BPA Environmental & Engineering, Inc.

feet bgs. = feet below ground surface

feet msl. = feet mean sea level

Depth to Groundwater¹ = below top of casing

Groundwater Elevation = calculated groundwater elevation

TABLE 2

SUMMARY OF GROUNDWATER SAMPLING FIELD PARAMETERS

PHASE 1 - PERMIT # 41-03 WHITE STREET LANDFILL GREENSBORO, NORTH CAROLINA S&ME PROJECT NO. 1584-98-081C

DATE	WELL	WELL	DEPTH TO	WATER	ODOR	PURGE	PUMP	WELL	EVAC	PURGED	TEMP	рН	SPECIFIC	ORP	DO	TURBIDITY
	ID	DEPTH	WATER	ELEVATION		METHOD	RATE	VOLUME	VOLUME	DRY?		CONDUCTANCE				
		(feet)	(feet)	(feet)			(mL/min)	(gallons)	(gallons)	(yes/no)	(deg C)	(SU)	(µs/cm)	(mV-NHE)	(mg/L)	(NTU)
10/6/2015	I-1	24	8.45	705.30	None	low flow	100	2.70	1.2	No	17.01	5.48	2341	123	0.99	2.41
10/6/2015	I-2	24	5.21	697.88	None	low flow	100	2.60	1.0	No	16.63	5.89	2017	-12	1.19	54.30
10/7/2015	I-3	24	14.01	693.42	None	low flow	100	1.66	1.5	No	14.50	5.97	2424	54	0.69	2.96
10/7/2015	I-4	15	2.57	692.37	None	low flow	100	2.03	2.0	No	17.89	6.35	1239	106	0.37	27.70
10/7/2015	MW-13	34	18.01	723.23	None	low flow	100	2.44	0.7	No	15.81	6.47	304	-38.4	3.80	1.62

Notes:

- 1. TEMP = groundwater temperature, measured in degrees Celsius
- 2. Pump Rate, measured in milliliters/minute
- 3. Specific Conductance, measured in $\mu s/cm$ indicates micro Siemens per centimeter.
- 4. SU indicates Standard Units.
- 5. NTU indicates Nephelometric Turbidity Units.
- 6. ORP = Oxidation Reduction Potential, mV-NHE indicates millivolts-Normal Hydrogen Electrode.
- 7. EVAC = evacuated volume of groundwater
- 8. DO = dissolved oxygen, measured in milligrams per liter

TABLE 3 SUMMARY OF GROUNDWATER ANALYSES RESULTS - DETECTIONS PHASE 1 - PERMIT # 41-03 WHITE STREET LANDFILL GREENSBORO, NORTH CAROLINA

S&ME PROJECT NO. 1584-98-081C

			Sa	ample Locatio	ns		NC SWSL	NCAC 2L	NCDENR	Federal			
Solid	Well ID	I-1	I-2	I-3	I-4	MW-13		Standards	IMAC	MCLs			
Waste	Sample ID	4103-I1	4103-l2	4103-I3	4103-I4	4103-MW13							
Section	Date Collected	10/06/15	10/06/15	10/07/15	10/07/15	10/08/15							
ID#	Detected Analytes	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)			
Appendix II Semi-volatile Organic Compounds 111 Bis(2-ethylhexyl)phthalate na na na na 1.8 J 15 3 ns ns													
111 Bis(2-ethylhexyl)phthalate na na na na 1.8 J 15 3													
Appendix II Volatile Organic Compounds													
75	1,1-Dichloroethane	1.0 J	<0.13	3.2 J	<0.13	<0.13	5	6	ns	ns			
77	1,1-Dichloroethene	<0.21	<0.21	0.80 J	<0.21	<0.21	5	7	ns	ns			
69	1,2-Dichlorobenzene	<0.19	1.4 J	0.84 J	<0.19	<0.19	5	20	ns	600			
71	1,4-Dichlorobenzene	3.6	1.7	4.7	0.53 J	<0.19	1	6	ns	75			
16	Benzene	3.3	<0.15	0.58 J	<0.15	<0.15	1	1	ns	5			
39	Chlorobenzene	7.2	8.0	18	0.67	<0.17	3	50	ns	100			
78	cis-1,2-Dichloroethene	0.94 J	0.41 J	0.87 J	<0.15	<0.15	5	70	ns	70			
196	Toluene	<0.14	0.50 J	<0.14	<0.14	<0.14	1	600	ns	ns			
211	Vinyl Chloride	<0.32	0.65 J	0.59 J	<0.32	<0.32	1	0.03	ns	2			
			8-RCR	A Metals + Ap	pendix II Met	als							
15	Barium	484	576	151	376	93.3 J	100	700	ns	2,000			
34	Cadmium	<0.360	<0.360	<0.360	3.80	< 0.360	1	2	ns	5			
51	Chromium	2.66	29.9	7.78 J	4.61 J	<1.40	10	10	ns	100			
131	Lead	3.70 J	4.30 J	<3.10	3.70 J	<3.10	10	15	ns	ns			
184	Silver	<1.90	<1.90	<1.90	<1.90	2.79 J	10	20	ns	100			
209	Vanadium	na	na	na	na	4.71 J	25	ns	0.3	ns			
213	Zinc	na	na	na	na	4.19 J	10	1,000	ns	5,000			

 μ g/L = concentrations reported in micrograms per liter (ug/L)

< = concentrations is less than the method detection limit shown

NC SWSL = North Carolina Solid Waste Section Limit

J = Concentration reported greater than the method detection limit but less than the SWSL, thus it is considered estimated

 $NCAC\ 2L\ Standards = 15A\ North\ Carolina\ Administrative\ Code\ 2L\ .0200,\ GW\ Quality\ Standards\ for\ Class\ GA\ groundwater.$

concentrations in bold exceed the corresponding 2L Standard

NCDENR IMAC = Interim Maximum Allowed Concentration, NCDENR

Federal MCL = Maximum Concentration Levels, USEPA

ns = no MCL listed, USEPA

na = not analyzed

TABLE 4 SUMMARY OF GROUNDWATER STANDARD EXCEEDANCES

PHASE 1 - PERMIT # 41-03 WHITE STREET LANDFILL GREENSBORO, NORTH CAROLINA S&ME PROJECT NO. 1584-98-081C

			Sample L	ocations		NCAC 2L	NCDENR	Federal					
Solid	Well ID	I-1	I-2	I-3	I-4	Standards	IMAC	MCLs					
Waste	Sample ID	4103-I1	4103-I2	4103-l3	4103-I4								
Section ID #	Date Collected Detected Analytes	10/06/15 (μg/L)	10/06/15 (μg/L)	10/07/15 (μg/L)	10/07/15 (μg/L)	(μg/L)	(μg/L)	(μg/L)					
	Appendix I Volatile Organic Compounds												
16	Benzene	3.3	<0.15	0.58 J	<0.15	1	ns	5					
211	Vinyl Chloride	< 0.32	0.65 J	0.59 J	<0.32	0.03	ns	2					
	8-RCRA Metals												
34	Cadmium	<0.360	<0.360	<0.360	3.80	2	ns	5					
51	Chromium	2.66	29.9	7.78 J	4.61 J	10	ns	100					

 μ g/L = concentrations reported in micrograms per liter (μ g/L)

<= concentrations is less than the method detection limit shown</p>

NC SWSL = North Carolina Solid Waste Section Limit

NCAC 2L Standards = 15A North Carolina Administrative Code 2L .0200, GW Quality Standards

for Class GA groundwater.

Concentration greater than the NCAC 2L Standards are shown in bold

NCDENR IMAC = Interim Maximum Allowed Concentration, NCDENR

Federal MCL = Maximum Concentration Levels, USEPA

ns = no MCL listed, USEPA

na = not analyzed

TABLE 5 SUMMARY OF SURFACE WATER ANALYSES RESULTS - DETECTIONS PHASE 1 - PERMIT # 41-03 WHITE STREET LANDFILL GREENSBORO, NORTH CAROLINA

S&ME PROJECT NO. 1584-98-081C

			s		NC SWSL	NCAC 2B								
Solid	Sample Location	SW-1	SW-2	SW-3	SW-4	SW-5		Standards						
Waste	Sample ID	4103-SW1	4103-SW2	4103-SW3	4103-SW4	4103-SW5								
Section	Date Collected	10/07/15	10/07/15	10/07/15	10/07/15	10/07/15								
ID#	Detected Analytes	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)						
	Appendix I Volatile Organic Compounds													
28	Bromodichloromethane	<0.17	<0.17	0.96 J	<0.17	<0.17	3	ns						
44	Chloroform	<0.18	<0.18	2.4 J	0.92 J	1.0 J	5	5.6						
	Appendix I Metals													
13	Antimony	0.268 J	<0.220	0.372 J	0.259 J	<0.220	6	5.6						
15	Barium	85.7 J	42.6 J	28.3 J	319	41.0 J	100	1000						
23	Beryllium	<0.100	<0.100	<0.100	1.50	<0.100	100	ns						
34	Cadmium	0.784 J	< 0.360	< 0.360	5.66	< 0.360	1	ns						
51	Chromium	7.93 J	<1.40	<1.40	66.1	<1.40	10	50						
53	Cobalt	4.34 J	<1.10	2.43 J	46.5	1.92 J	10	3						
54	Copper	11.30	<1.60	2.65 J	57.1	2.17 J	10	7						
131	Lead	7.02 J	<3.10	<3.10	93.2	<3.10	10	25**						
184	Silver	<1.90	<1.90	2.74 J	<1.90	2.32 J	10	0.06**						
152	Nickel	3.16 J	<1.80	6.56 J	22.0 J	3.14 J	50	25						
209	Vanadium	18.2 J	2.91 J	3.69 J	61.8	3.05 J	25	ns						
213	Zinc	117	7.88 J	25.2	1,020	24.5	10	50**						

J = estimated

 μ g/L = concentrations reported in micrograms per liter (μ g/L)

< = concentrations is less than the method detection limit shown

NC SWSL = North Carolina Solid Waste Section Limit

^{* =} Title 15A NCAC 2B Standards for Class C, WS-V surface water

^{** =} Freshwater Standard

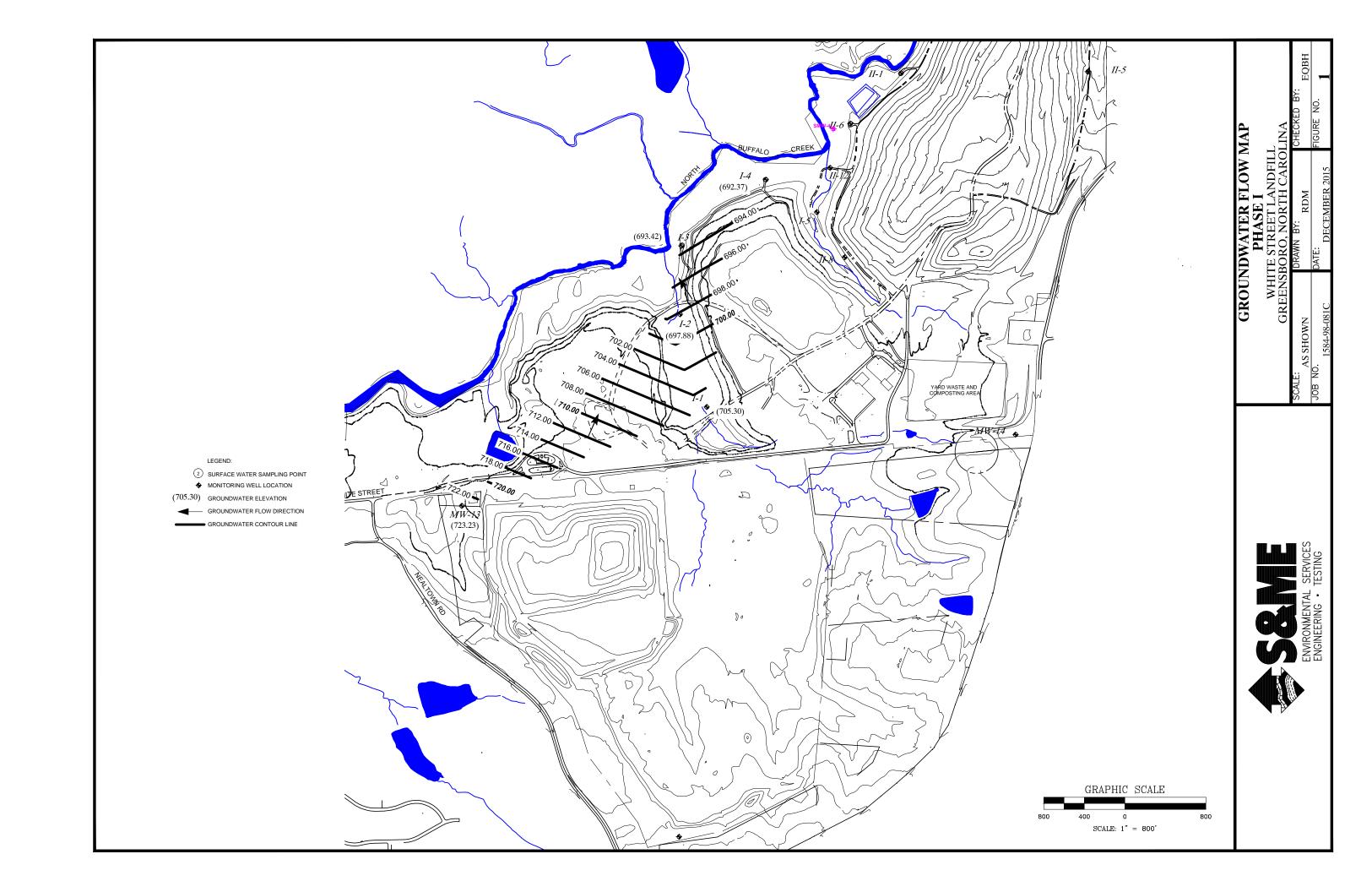
TABLE 6 SUMMARY OF 2B SURFACE WATER STANDARD EXCEEDANCES

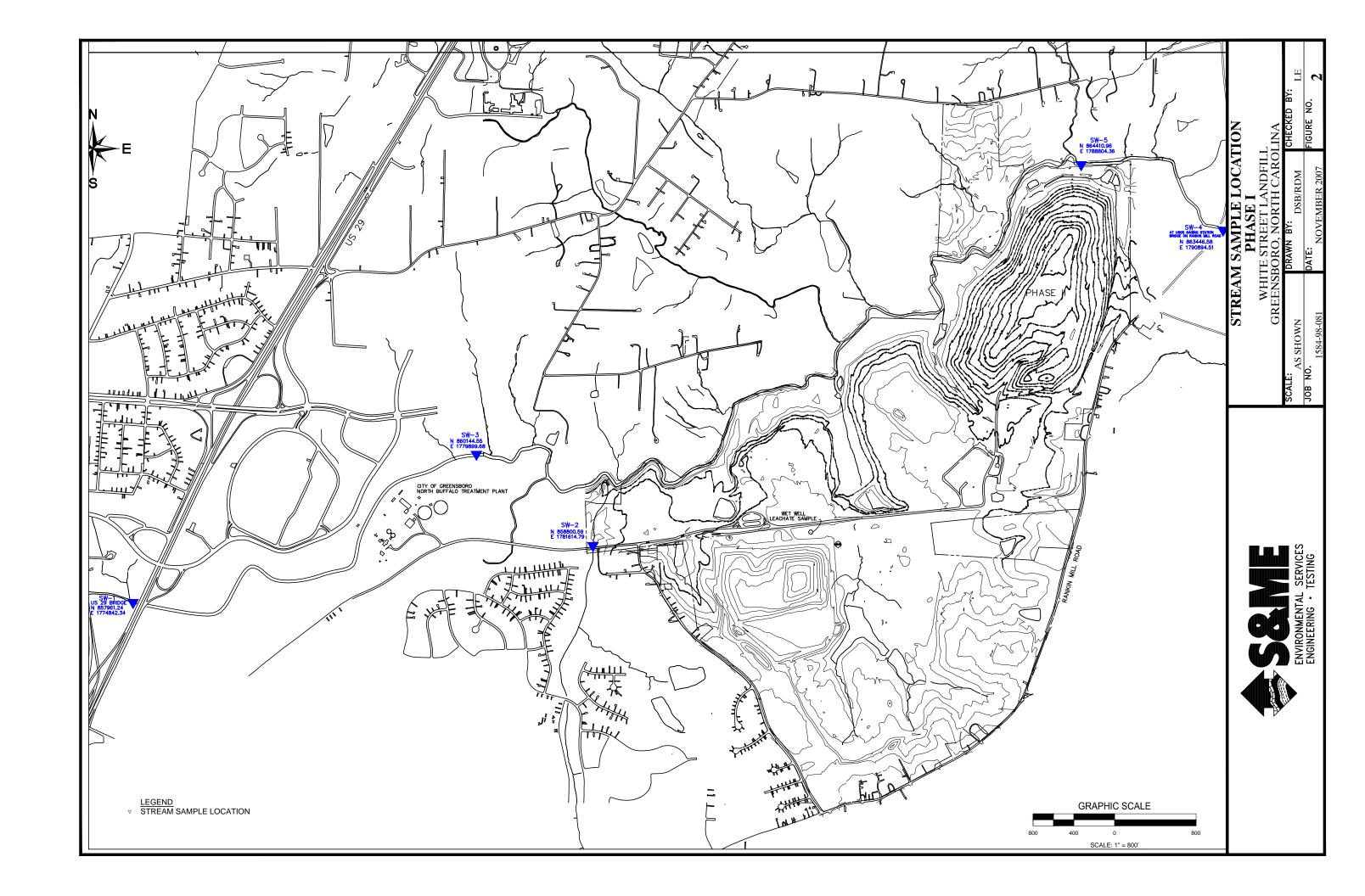
PHASE 1 - PERMIT # 41-03 WHITE STREET LANDFILL GREENSBORO, NORTH CAROLINA S&ME PROJECT NO. 1584-98-081C

		Sa	ample Locatio	ns	NC SWSL	NCAC 2B						
	Sample Location	SW-1	SW-3	SW-4		Standards*						
	Sample ID	4103-SW1	4103-SW3	4103-SW4								
Solid Waste	Date Collected	10/07/15	10/07/15	10/07/15								
Section ID #	Detected Analytes	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)						
	8-RCRA Metals											
51	Chromium	7.93 J	<1.40	66.1	10	50						
53	Cobalt	4.34 J	2.43 J	46.5	10	3						
54	Copper	11.30	2.65 J	57.1	10	7 (AL)						
131	Lead	<3.10	<3.10	93.2	10	25**						
184	Silver	<1.90	2.74 J	<1.90	10	0.06** (AL)						
213	Zinc	117	25.2	1,020	10	50** (AL)						

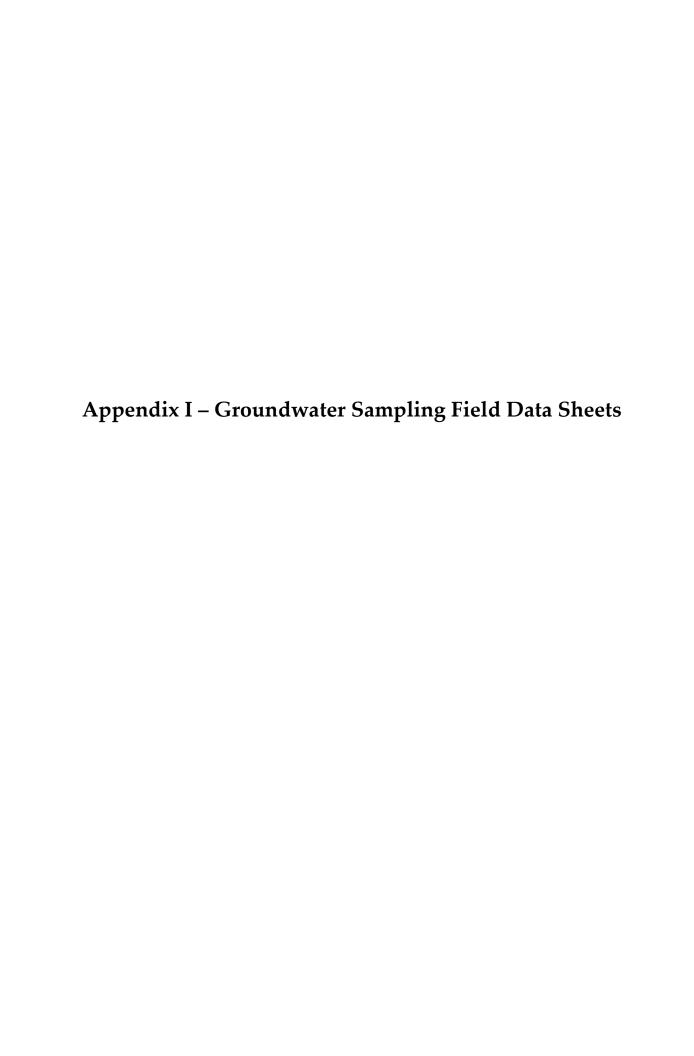
concentrations in bold print are greater than the referenced NCAC 2B Standard

 μ g/L = concentrations reported in micrograms per liter (μ g/L)


< = concentrations is less than the method detection limit shown


* = Title 15A NCAC 2B Standards for Class C, WS-V surface water

** = Freshwater Standard


(AL) = Action Level

J = Concentration reported greater than the method detection limit but less than the SWSL, thus it is considered estimated

Location:	White St	reet La	ndfill				Purge Date:	Т	hursday, Oct	ober 08, 201	5		
Project No.:	1584-98	-081				-	Purge Time:		30 Mi	nutes			
Source Well:	4103-MV					-	Sample Date:	Т	hursday, Oct	ober 08, 201	5		
						-	Sample Time:		92	20			
Locked?:	Yes:	x		No:			Weather:		Sui	Sunny			
Sampled By:	Bradley I	Keyse	- '				Air Temp:		66	*F			
						-							
Water Level 8													
Depth to water from		٠.			18.01					feet			
Depth to well bott		neasurii	ng point:		33.00					feet			
Height of water co	olumn:					14.99 feet Top of Casing							
Measuring point:					Top of (Casing							
Wall Burging	° Samn	la Cal	lootion										
Well Purging Purge Method	Bladder		iection					Purge ⁻	Гіте				
Sample Method	Bladder	Pump				-	Start	850	Stop	920			
Purge Rate			100			ml/min	Sa	mple Colle	ction Time				
Control Settings	On:	3.0	sec.			-	Start	920	Stop	1000			
	Off:	27.0	sec.						-				
	Pressure:	30	psi										
Volume of water i	in well												
	2" well:												
		height	14.99	x .163 =		2.44337	_						
Volume of water	removed		3.0					gallons		liters	Х		
Was well purged	dry		Yes		No	x	-						
Field Analyse	s		*Stabilization	Paramete	ers								
		Time	Date	Temp	рН	Conductivity	*ORP	*D.O.	*Turbidity	DTW			
		850	40/0/0045	45.04	0.40	0.240	22.0	5.04	0.05	40.04			
		855 900	10/8/2015 10/8/2015	15.61 15.50	6.42	0.318 0.318	-23.8 -28.5	5.31 4.26	8.25 8.40	18.61 18.86			
		905	10/8/2015	15.68	6.45	0.314	-34.7	3.92	2.01	19.01			
		910	10/8/2015	15.78	6.48	0.311	-36.2	3.91	1.61	19.09			
		915	10/8/2015	15.81	6.47	0.306	-37.9	3.83	1.78	19.11			
		920	10/8/2015	15.81	6.47	0.304	-38.4	3.80	1.62	19.10			
			l		1	1	1		1				

15.81 6.47 * C units

920 10/8/2015

Final Readings

0.304 mS/cm -38.4 mV 3.80 mg/L 1.62 NTU 19.10

Location:	White St	reet Lai	ndfill			<u>-</u>	Purge Date:	Т	uesday, Oct	ober 06, 201	5
Project No.:	1584-98-	-081				_	Purge Time:				
Source Well:	4103-I1					_	Sample Date:	T	uesday, Oct	ober 06, 201	5
							Sample Time:		17	35	
Locked?:	Yes:	X	-	No:		_	Weather:		Sunny		
Sampled By:	Gary Sin	ncox				-	Air Temp:		70	*F	
Water Level 8	k Well Da	ata									
Depth to water from	om measu	ring poi	nt:		8.45					feet	
Depth to well bot	tom from m	neasurir	ng point:		25.00					feet	
Height of water c	olumn:				16.55					feet	
Measuring point:					Top of 0	Casing					
Well Purging	& Samp	le Col	lection								
Purge Method	Bladder	Pump				_		Purge 7	Гіте		
Sample Method	Bladder	Pump				_	Start	1635	Stop	1725	
Purge Rate	100					_ml/min	Sa	mple Colle	ction Time		
Control Settings	On:	3.0	sec.				Start	1725	Stop	1735	
		27.0	•								
	Pressure:		psi								
Volume of water	in well										
	2" well:										
		height:	16.55	x .163 =		2.69765					
Volume of water	removed		4.0					gallons		liters	x
								J		_	
Was well purged	dry		Yes		_ No	x					
Field Analyse	s		*Stabilizatio	on Parame	eters						
				_			****				
		Time 1640	Date 10/6/2015	Temp 18.74	pH 5.66	Conductivity 2.490	*ORP 117	*D.O. 2.48	*Turbidity 19.50	DTW 8.55	
			10/6/2015		5.66	2.490	117	2.46	17.10	8.62	
		1650	10/6/2015	18.10	5.58	2.392	122	1.40	12.40	8.69	
		1655	10/6/2015	17.87	5.55	2.365	124	1.39	6.84	8.67	
		1700	10/6/2015	17.89	5.55	2.356	124	1.35	5.76	8.68	
			10/6/2015	17.64	5.53	2.350	124	0.83	3.84	8.68	
			10/6/2015	17.43	5.53	2.346	123	0.89	3.25	8.68	
			10/6/2015	17.24	5.53	2.342	122	0.98	2.46	8.68	
		1720 1725	10/6/2015 10/6/2015	17.10 17.01	5.51 5.48	2.341 2.341	121 123	0.95	2.34 2.41	8.68 8.64	
		1120	13,3,2013	17.01	3.70	2.071	120	5.55	4.71	5.04	

17.01 * C

1725 10/6/2015

Final Readings

5.48 units 2.341 mS/cm 123 mV 0.99 mg/L 2.41 NTU 8.64

Location:	White St	reet La	ndfill				Purge Date:	Т	uesday, Oct	ober 06, 201	5		
Project No.:	1584-98-	-081				-	Purge Time:						
Source Well:	4103-I2					_	Sample Date	e:T	uesday, Oct	ober 06, 201	5		
							Sample Time	e:	18	50			
Locked?:	Yes:	х		No:		_	Weather:		Cle	ear			
Sampled By:	Gary Sin	ncox				_	Air Temp:		60	*F			
Water Level 8	Wall D	-1-0											
			_4.		F 04					44			
Depth to water from					5.21					feet			
Depth to well bott		ieasurii	ig point:		21.30					feet feet			
Height of water co	olumn:				16.09	Top of Casing							
Measuring point:					тор ог	Casing							
Well Purging Purge Method	& Samp Bladder		lection					Purge T	ime.				
Sample Method	Bladder					-	St.	art 1755	Stop	1840			
Purge Rate	Diaudei	rump	100			- ml/min		Sample Colle		1040			
Control Settings		3.0				-		art 1840	Stop	1850			
Control Settings		27.0	•				Oi.	art 1040	Оюр	1000			
	Pressure:		psi										
	1 1000010.		Poi										
Volume of water i	n well												
	2" well:												
		height:	16.09	x .163 =		2.62267							
Volume of water i	removed		4.0					gallons		liters	х		
Was well purged	dry		Yes		No	X							
Field Analyses	_		*0										
Field Analyse	S		*Stabilizatio	n Parame	ters								
		Time	Date	Temp	рН	Conductivity	*ORP	*D.O.	*Turbidity	DTW			
		1800	10/6/2015	17.12	6.01	2.044	-4	7.70	36.70	6.25			
		1805	10/6/2015	17.07	5.97	2.045	-8	1.42	51.00	6.61			
		1810		17.07	5.95	2.044	-10	1.15	62.70	6.82			
			10/6/2015 10/6/2015	17.03 16.95	5.94 5.93	2.041 2.035	-11 -12	1.15 1.17	63.50 64.60	6.95 7.14			
			10/6/2015	16.95	5.93	2.035	-12	1.17	61.70	7.14			
			10/6/2015	16.88	5.93	2.028	-12	1.55	57.90	7.19			
			10/6/2015	16.76	5.92	2.021	-12	1.22	57.40	7.21			
		1840	10/6/2015	16.63	5.89	2.017	-12	1.19	54.30	7.20			
					L								

2.017 mS/cm -12 mV 1.19 mg/L 54.30 NTU

7.20

1840 10/6/2015 16.63 5.89 * C units

Project No.: 1584-98-081 Purge Time: Source Well: 4103-I3 Sample Date: Wednesday, Octobe	per 07, 2015
	per 07, 2015
Sample Time: 840	
Locked?: Yes: x No: Weather: Clear	
Sampled By: Gary Simcox Air Temp: 55 *F	
Water Level & Well Data	
Depth to water from measuring point: 14.01 feet	et
Depth to well bottom from measuring point: 24.20 feet	et
Height of water column: 10.19 feet	
Measuring point: Top of Casing	
Top or Caoing	
Well Purging & Sample Collection	
Purge Method Bladder Pump Purge Time	
· · · · · · · · · · · · · · · · · · ·	830
Purge Rate 100 ml/min Sample Collection Time	
	840
Off: 27.0 sec.	
Pressure: 21 psi	
11033utc. <u>21</u> psi	
Volume of water in well	
2" well:	
height: 10.19 x .163 = 1.66097	
Values of victor and v	lia
Volume of water removed 4.0 gallons gallons	liters x
Volume of water removed 4.0 gallons	liters x
Values of victor and v	liters <u>x</u>
Volume of water removed 4.0 gallons Was well purged dry Yes No	liters x
Volume of water removed 4.0 gallons	liters <u>x</u>
Volume of water removed 4.0 gallons Was well purged dry Yes No x *Stabilization Parameters	
Volume of water removed 4.0 gallons Was well purged dry Yes No x Field Analyses *Stabilization Parameters Time Date Temp pH Conductivity *ORP *D.O. *Turbidity II	liters x DTW 14.04
Volume of water removed 4.0 gallons Was well purged dry Yes Nox Field Analyses *Stabilization Parameters Time Date Temp pH Conductivity *ORP *D.O. *Turbidity Image: Temp pH Conductivity *D.O. *Turbi	DTW
Volume of water removed 4.0 gallons	DTW 14.04
Volume of water removed 4.0 gallons	DTW 14.04 14.15
Volume of water removed 4.0 gallons Was well purged dry Yes No x *Stabilization Parameters *Stabilization Parameters Time Date Temp pH Conductivity *ORP *D.O. *Turbidity E 735 10/7/2015 14.54 6.03 2.352 88 4.97 38.60 1 740 10/7/2015 14.45 6.00 2.399 78 3.47 15.30 1 745 10/7/2015 14.34 5.98 2.430 71 2.51 12.70 1 750 10/7/2015 14.33 5.97 2.458 65 1.88 10.55 1 755 10/7/2015 14.27 5.97 2.471 61 1.49 9.04 1	DTW 14.04 14.15 14.15 14.22 14.18
Volume of water removed 4.0 gallons Was well purged dry Yes No x *Stabilization Parameters *Stabilization Parameters *Time Date Temp pH Conductivity *ORP *D.O. *Turbidity Date Tolor/2015 14.54 6.03 2.352 88 4.97 38.60 1 740 10/7/2015 14.45 6.00 2.399 78 3.47 15.30 1 745 10/7/2015 14.34 5.98 2.430 71 2.51 12.70 1 750 10/7/2015 14.33 5.97 2.458 65 1.88 10.55 1 755 10/7/2015 14.27 5.97 2.471 61 1.49 9.04 1 800 10/7/2015 14.22 5.96 2.478 57 1.19 8.01 1	DTW 14.04 14.15 14.15 14.22 14.18 14.16
Volume of water removed 4.0 gallons Was well purged dry Yes No x *Stabilization Parameters *Stabilization Parameters *Time Date Temp pH Conductivity *ORP *D.O. *Turbidity Date Tolor/2015 14.54 6.03 2.352 88 4.97 38.60 1 740 10/7/2015 14.45 6.00 2.399 78 3.47 15.30 1 745 10/7/2015 14.34 5.98 2.430 71 2.51 12.70 1 750 10/7/2015 14.33 5.97 2.458 65 1.88 10.55 1 755 10/7/2015 14.27 5.97 2.471 61 1.49 9.04 1 800 10/7/2015 14.22 5.96 2.478 57 1.19 8.01 1 805 10/7/2015 14.31 5.96 2.483 53 0.95 6.39 1	DTW 14.04 14.15 14.15 14.15 14.22 14.18 14.16 14.15
Volume of water removed 4.0 gallons Was well purged dry Yes No x *Stabilization Parameters *Stabilization Parameters *Stabilization Parameters *Stabilization Parameters *Time Date Temp pH Conductivity *ORP *D.O. *Turbidity E	DTW 14.04 14.15 14.15 14.15 14.22 14.18 14.16 14.15 14.16
Volume of water removed 4.0 gallons Was well purged dry Yes No x *Stabilization Parameters *Stabilization Parameters *Time Date Temp pH Conductivity *ORP *D.O. *Turbidity Date Temp phint Conductivity Date	DTW 14.04 14.15 14.15 14.22 14.18 14.16 14.15 14.16 14.16
Volume of water removed 4.0 gallons Was well purged dry Yes No x Field Analyses *Stabilization Parameters *Time Date Temp pH Conductivity *ORP *D.O. *Turbidity Date Temp 10/107/2015 14.54 6.03 2.352 88 4.97 38.60 17/40 10/7/2015 14.45 6.00 2.399 78 3.47 15.30 17/45 10/7/2015 14.34 5.98 2.430 71 2.51 12.70 17/45 10/7/2015 14.33 5.97 2.458 65 1.88 10.55 17/55 10/7/2015 14.27 5.97 2.471 61 1.49 9.04 17/45 10/7/2015 14.27 5.97 2.471 61 1.49 9.04 17/480 10/7/2015 14.22 5.96 2.478 57 1.19 8.01 17/480 10/7/2015 14.31 5.96 2.483 53 0.95 6.39 17/48 10/7/2015 14.37 5.97 2.480 51 0.85 4.76 17/48 10/7/2015 14.13 5.95 2.463 52 0.73 3.92 17/48 10/7/2015 14.13 5.95 2.463 52 0.73 3.92 17/48 180 10/7/2015 14.13 5.95 2.463 52 0.73 3.92 17/48 180 10/7/2015 14.13 5.95 2.463 52 0.73 3.92 17/48 180 10/7/2015 14.13 5.95 2.463 52 0.73 3.92 17/48 180 10/7/2015 14.51 5.96 2.451 52 0.67 3.17 17/48	DTW 14.04 14.15 14.15 14.22 14.18 14.16 14.16 14.16 14.16 14.16
Volume of water removed 4.0 gallons Was well purged dry Yes No x *Stabilization Parameters *Stabilization Parameters *Time Date Temp pH Conductivity *ORP *D.O. *Turbidity Date Tourbidity Date Date Temp pH Conductivity *ORP *D.O. *Turbidity Date Date Tourbidity Date Date Date Date Date Date Date Date	DTW 14.04 14.15 14.15 14.22 14.18 14.16 14.16 14.16 14.16 14.16 14.16
Volume of water removed 4.0 gallons Was well purged dry Yes No x *Stabilization Parameters *Stabilization Parameters *Time Date Temp pH Conductivity *ORP *D.O. *Turbidity Date Tourbidity Date Date Temp pH Conductivity *ORP *D.O. *Turbidity Date Date Tourbidity Date Date Date Date Date Date Date Date	DTW 14.04 14.15 14.15 14.22 14.18 14.16 14.16 14.16 14.16 14.16
Volume of water removed 4.0 gallons Was well purged dry Yes No x *Stabilization Parameters *Stabilization Parameters *Time Date Temp pH Conductivity *ORP *D.O. *Turbidity Date Tourbidity Date Date Temp pH Conductivity *ORP *D.O. *Turbidity Date Date Tourbidity Date Date Date Date Date Date Date Date	DTW 14.04 14.15 14.15 14.22 14.18 14.16 14.16 14.16 14.16 14.16 14.16
Volume of water removed 4.0 gallons Was well purged dry Yes No x *Stabilization Parameters *Stabilization Parameters *Time Date Temp pH Conductivity *ORP *D.O. *Turbidity Date Tourbidity Date Date Temp pH Conductivity *ORP *D.O. *Turbidity Date Date Tourbidity Date Date Date Date Date Date Date Date	DTW 14.04 14.15 14.15 14.22 14.18 14.16 14.16 14.16 14.16 14.16 14.16
Volume of water removed 4.0 gallons Was well purged dry Yes No x *Stabilization Parameters *Stabilization Parameters *Time Date Temp pH Conductivity *ORP *D.O. *Turbidity Date Tourbidity Date Date Temp pH Conductivity *ORP *D.O. *Turbidity Date Date Tourbidity Date Date Date Date Date Date Date Date	DTW 14.04 14.15 14.15 14.22 14.18 14.16 14.16 14.16 14.16 14.16 14.16
Volume of water removed 4.0 gallons Was well purged dry Yes No x *Stabilization Parameters *Stabilization Parameters *Time Date Temp pH Conductivity *ORP *D.O. *Turbidity Date Tourbidity Date Date Temp pH Conductivity *ORP *D.O. *Turbidity Date Date Tourbidity Date Date Date Date Date Date Date Date	DTW 14.04 14.15 14.15 14.22 14.18 14.16 14.16 14.16 14.16 14.16 14.16

14.50 5.97 * C units

2.424

mS/cm

0.69

mg/L

54

mV

2.96

NTU

14.16

830 10/7/2015

Location:	White Str	reet Lar	ndfill				Purge Date	÷. A	Vednesday, Oc	tober 07, 201	15
Project No.:	1584-98-					_	Purge Time	-	,		
Source Well:	4103-I4								Vednesday, Oc	tober 07, 20	15
						=	Sample Tir		104	•	
Locked?:	Yes:	x		No:			Weather:	·	Sun		
Sampled By:	Gary Sim					-	Air Temp:		60	•	
, , ,						<u>-</u>					
Water Level 8	Well Da	ata									
Depth to water fro	om measur	ing poir	nt:		2.57				f	feet	
Depth to well bott	om from m	easurir	ng point:		15.00					feet	
Height of water co	olumn:				12.43				f	feet	
Measuring point:					Top of 0	Casing					
Well Purging	& Sampl	le Coll	lection								
Purge Method	Bladder F	Pump						Purge	Time		
Sample Method	Bladder F	Pump						Start 915	Stop	1035	
Purge Rate			100			ml/min		Sample Col	ection Time		
Control Settings	On:	2.0	sec.				9	Start 1035	Stop	1045	
	Off:	28.0	sec.								
	Pressure:	15	psi								
Volume of water i	n well										
	2" well:										
		height:	12.43	x .163 =		2.02609	_				
Volume of water i	removed		5.0					gallor	ıs	liters	x
Was well purged	dry		Yes		No	X	-				
Field Analyse	S		*Stabilization	n Parame	ters						
	ĺ	Time	Date	Temp	pH	Conductivity	*ORP	*D.O.	*Turbidity	DTW	
		920	10/7/2015	16.51	6.48	1.430	45	6.65	64.00	3.42	
		925 930	10/7/2015 10/7/2015	16.58 16.66	6.46	1.380 1.336	47 50	3.32 1.34	73.10 71.20	3.76 3.90	
		935	10/7/2015	16.76	6.42	1.307	53	0.98	67.50	4.05	
		940	10/7/2015	17.01	6.37	1.258	68	0.57	68.60	4.21	
		945	10/7/2015	17.09	6.36	1.252	72	0.48	69.90	4.31	
		950	10/7/2015	17.17	6.36	1.245	78	0.29	61.80	4.44	
		955	10/7/2015	17.33	6.35	1.239	86	0.35	58.40	4.54	
		1000	10/7/2015	17.37	6.34	1.237	89	0.30	48.00	4.53	
		1005 1010	10/7/2015 10/7/2015	17.41 17.48	6.34 6.34	1.236 1.235	92 96	0.27	44.90 40.10	4.56 4.54	
		1015	10/7/2015	17.57	6.34	1.235	99	0.29	37.00	4.55	
		1020	10/7/2015	17.67	6.34	1.236	102	0.29	32.10	4.54	
		1025	10/7/2015	17.79	6.35	1.239	104	0.30	29.40	4.54	
		1030	10/7/2015	17.83	6.35	1.239	106	0.36	28.50	4.54	
		1035	10/7/2015	17.89	6.35	1.239	106	0.37	27.70	4.54	
Final Readings	ĺ	1035	10/7/2015	17.89	6.35	1.239	106	0.37	27.70	4.54	
a. Roddings	ļ	. 5555	10,112010	* C	units	mS/cm	mV	mg/L	NTU	1.0-	

Location:	White St	reet La	ndfill				Purge Date:	We	dnesday, O	ctober 07, 20	015
Project No.:	1584-98-					-	Purge Time:				
Source Well:	4112-SW	/1				-	Sample Date:	We	dnesday, O	ctober 07, 20	015
	Sı	ımmit <i>i</i>	Avenue Bri	dge		_'	Sample Time:		4.4	.00	
Locked?:	Yes:	х	-	No:		_	Weather:		Sui	nny	
Sampled By:	Gary Sim	псох				_	Air Temp:		65	*F	
	=										
Water Level 8											
Depth to water from										feet	
Depth to well bot		neasurii	ng point:							feet	
Height of water c					0.00					feet	
Measuring point:										•	
Wall Burging	e Comp	la Cal	lootion								
Well Purging Purge Method	& Samp	ie Coi	lection					Purge T	'imo		
Sample Method						-	Stort	Purge i			
Purge Rate						ml/min	•	mple Collec			
Control Settings	On:		sec			-		inple collec			
Control County			-				Otari		Оюр		•
	Pressure:		="								
Volume of water	in well										
	2" well:										
		height:	: 0	x .163 =		0	_				
Volume of water	removed							gallons		liters	
Was well purged	dry		Yes		No		•				
Field Analyse	es		*Stabilization	on Parame	eters						
				_			****				
		Time	Date	Temp	pH	Conductivity	*ORP	*D.O.	*Turbidity	DTW	
											·
											,
											·

1400 10/7/2015

Final Readings

18.76 7.27 * C units 0.229 mS/cm

Location:	White St	reet Lai	ndfill				Purge Date:	We	dnesday, Od	ctober 07, 2	015
Project No.:	1584-98-	081				•	Purge Time		-		
Source Well:	4112-SW	/2				•	Sample Dat	e: We	ednesday, Od	ctober 07, 2	015
			and Nealtov	vn Road		-	Sample Tim				
Locked?:	Yes:	x		No:			Weather:		_		
Sampled By:	Gary Sim		-			•	Air Temp:		65	•	
						•	·				
Water Level 8											
Depth to water from		٠.								feet	
Depth to well bott		neasurir	ng point:							feet	
Height of water co	olumn:				0.00					feet	
Measuring point:											
Well Purging	& Samn	la Cal	lection								
Purge Method			icotion			-		Purge 1	Time		
Sample Method						=	S	tart			
Purge Rate						ml/min		Sample Colle			
Control Settings			-				S	tart	Stop		
	Pressure:		psi								
Volume of water i	in well										
	2" well:										
		height:	. 0	x .163 =		0					
Valuma of water	romovod							gallana		litoro	
Volume of water	removed							gallons		liters	Х
Was well purged	dry		Yes		No	x					
Field Analyse	s		*Stabilization	n Parame	ters						
		Time	Date	Temp	pН	Conductivity	*ORP	*D.O.	*Turbidity	DTW	
		111110	Date	remp		Conductivity	OILI	D.O.	raibiaity	DIW	,
											·
											·

0.151 mS/cm

1320 10/7/2015 17.11 7.37 * C units

Location:	White Str	eet Lar	ndfill				Purge Date:	We	ednesday, O	ctober 07, 20	015
Project No.:	1584-98-	081				_'	Purge Time:				
Source Well:	4112-SW	'3				="	Sample Date:	We	ednesday, O	ctober 07, 20	015
	Wast	e Wate	r Treatment	Plant		="	Sample Time:		15	45	
Locked?:	Yes:			No:			Weather:		Su	nny	
Sampled By:	Gary Sim	сох					Air Temp:		65	*F	
Water Level 8	& Well Da	ıta									
Depth to water fro	om measuri	ing poir	nt:							feet	
Depth to well bott	om from m	easurir	ng point:							feet	
Height of water co	olumn:				0.00					feet	
Measuring point:											
Well Purging Purge Method			lection					Purge ⁻	Гіте		
Sample Method						=' -	Star	rt	Stop		
Purge Rate						ml/min	S	Sample Colle			
Control Settings	On:		sec.				Star	rt	Stop		
	Off:		sec.								
	Pressure:		psi								
Volume of water i	2" well:	height:	0	x .163 =		0					
Volume of water i	removed							gallons		liters	
Was well purged	dry		Yes		No	x					
Field Analyse	s		*Stabilizatio	n Parame	ters						
	ı	Time	Date	Temp	pН	Conductivity	*ORP	*D.O.	*Turbidity	DTW	†
											,
	ŀ										
											,
	ŀ										
	ŀ										
											,
	[
	}										
	}										
	ŀ										

21.82 7.34 * C units

0.337 mS/cm

154 10/7/2015

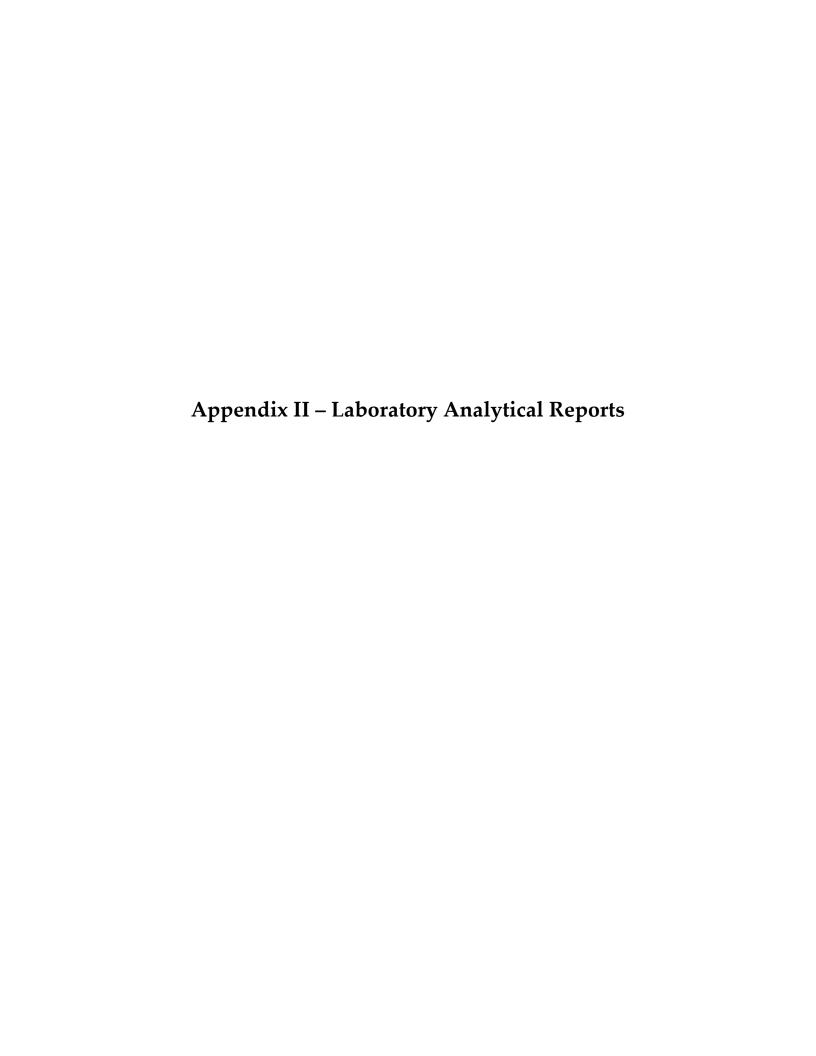
Location:	White Str	eet Lar	ndfill				Purge Date:	We	ednesday, O	ctober 07, 20	015
Project No.:	1584-98-					-	Purge Time:		•	·	
Source Well:	4112-SW					-	Sample Date	: We	ednesday, O	ctober 07, 20	015
			ill Road Bri	dge		-	Sample Time				
Locked?:	Yes:	х		No:			Weather:		C	nny	
Sampled By:	Gary Sim		•			-	Air Temp:			*F	
Water Level & Depth to water from			nt:							feet	
Depth to well bott		0.								feet	
Height of water co		casum	ig point.		0.00					feet	
Measuring point:	Julii.				0.00					icet	
Volume of water i	On: Off: Pressure: n well 2" well:		sec.			- _ml/min 0	Sta	Purge Tart	ction Time Stop		
Volume of water r	removed							gallons		liters	
Was well purged	dry		Yes		No						
Field Analyse	s		*Stabilizatio	n Parame	ters						
	,	Time	Date	Temp	рН	Conductivity	*ORP	*D.O.	*Turbidity	DTW	-

20.90 7.62 *C units

0.299

mS/cm

1445 10/7/2015


Location:	White Str	reet La	ndfill				Purge Date:	We	ednesday, Od	ctober 07. 20	015
Project No.:	1584-98-					-	Purge Time:			,	
Source Well:	4112-SW					_	Sample Date:	We	ednesday, Od	ctober 07, 20	015
			onitor well	II-3		-	Sample Time		40		
Locked?:	Yes:	x		No:			Weather:		Cum	nny	
Sampled By:	Gary Sim		-			-	Air Temp:		65	*F	
Water Level 8	& Well Da	nta									
Depth to water from	om measur	ina poi	nt:							feet	
Depth to well bott										feet	
Height of water of			.g po		0.00					feet	
Measuring point:					0.00						
Well Purging	& Sampl	le Col	lection								
Purge Method						_		Purge 7			
Sample Method						-		rt			
Purge Rate						gpm	:	Sample Colle			
Control Settings							Sta	rt	Stop		
	Off:		sec.								
	Pressure:		psi								
Volume of water	in well										
	2" well:										
		height	:0	x .163 =		0					
Volume of water	removed		0.0					gallons	x	liters	
Was well purged	dry		Yes		No	x					
Field Analyse	es		*Stabilizati	on Parame	eters						
	ı	Time	Date	Temp	рН	Conductivity	*ORP	*D.O.	*Turbidity	DTW	1
				1							
				-							
			1			1					

19.20 7.19 * C units

0.284

mS/cm

124 10/7/2015

Environmental Conservation Laboratories, Inc.

102-A Woodwinds Industrial Court

Cary NC, 27511

Phone: 919.467.3090 FAX: 919.467.3515

Monday, October 19, 2015

City of Greensboro (CI034)

Attn: Lewis Walker 2503 White Street Greensboro, NC 27405

RE: Laboratory Results for

Project Number: [none], Project Name/Desc: White Street Landfill AppI (Phase I)

ENCO Workorder(s): C512355

Dear Lewis Walker,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Wednesday, October 7, 2015.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Cary. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

Chuck Smith

Project Manager

Enclosure(s)

SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: 4103-I1	Lab ID: C512355-01		Sampled: 10/06/15 1	7:35	Received: 10/07/15 13:15
Parameter H	old Date/Time(s)	Prep Date/	Γime(s)	Analysis Date/	Γime(s)
EPA 6010C 04	4/03/16	10/08/15	08:50	10/12/2015 15:0	9
EPA 7470A 11	1/03/15	10/12/15	08:24	10/13/2015 11:1	5
EPA 8260B 10	0/20/15	10/13/15	12:45	10/14/2015 18:4	1

Client ID: 4103-I2	Lab ID: C512355-02	Sampled: 10/06/15	18:50 Received: 10/07/15 13:15
Parameter	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)
EPA 6010C	04/03/16	10/08/15 08:50	10/12/2015 15:12
EPA 7470A	11/03/15	10/12/15 08:24	10/13/2015 11:17
EPA 8260B	10/20/15	10/13/15 12:45	10/14/2015 19:10

Client ID: 4103-I3		Lab ID: C512355-03	Sampled: 10/07/15	08:40 Received: 10/07/15 13:15
Parameter	Hold Date/Time(s)	Prep Date/	Time(s)	Analysis Date/Time(s)
EPA 6010C	04/04/16	10/08/15	08:50	10/12/2015 15:15
EPA 7470A	11/04/15	10/12/15	08:24	10/13/2015 11:19
EPA 8260B	10/21/15	10/13/15	12:41	10/14/2015 06:12

Client ID: 4103-I4		Lab ID: C512355-04	Sampled: 10/07/15	10:45 Received: 10/07/15 13:15
Parameter	Hold Date/Time(s)	Prep Date	/Time(s)	Analysis Date/Time(s)
EPA 6010C	04/04/16	10/08/15	08:50	10/12/2015 15:23
EPA 7470A	11/04/15	10/12/15	08:24	10/13/2015 11:23
EPA 8260B	10/21/15	10/13/15	12:41	10/14/2015 06:41

NORTH CAROLINA SWS SAMPLE DETECTION SUMMARY

Client ID: 4103-I1				Lab ID:	C512355-01				
Analyte	Results	Flag	DF	MDL	MRL	NC SWSL	Units	Method	Notes
1,1-Dichloroethane	1.0	J	1	0.13	1.0	5	ug/L	EPA 8260B	
1,4-Dichlorobenzene	3.6		1	0.19	1.0	1	ug/L	EPA 8260B	
Barium - Total	484		1	1.00	10.0	100	ug/L	EPA 6010C	
Benzene	3.3		1	0.15	1.0	1	ug/L	EPA 8260B	
Chlorobenzene	7.2		1	0.17	1.0	3	ug/L	EPA 8260B	
Chromium - Total	2.66	J	1	1.40	10.0	10	ug/L	EPA 6010C	
cis-1,2-Dichloroethene	0.94	J	1	0.15	1.0	5	ug/L	EPA 8260B	
Lead - Total	3.70	J	1	3.10	10.0	10	ug/L	EPA 6010C	
lient ID: 4103-I2				Lab ID:	C512355-02				
Analyte	Results	Flag	DF	MDL	MRL	NC SWSL	Units	Method	Notes
1,2-Dichlorobenzene	1.4	J	1	0.19	1.0	5	ug/L	EPA 8260B	
1,4-Dichlorobenzene	1.7		1	0.19	1.0	1	ug/L	EPA 8260B	
Barium - Total	576		1	1.00	10.0	100	ug/L	EPA 6010C	
Chlorobenzene	8.0		1	0.17	1.0	3	ug/L	EPA 8260B	
Chromium - Total	29.9		1	1.40	10.0	10	ug/L	EPA 6010C	
cis-1,2-Dichloroethene	0.41	J	1	0.15	1.0	5	ug/L	EPA 8260B	
Lead - Total	4.30	J	1	3.10	10.0	10	ug/L	EPA 6010C	
Toluene	0.50	J	1	0.14	1.0	1	ug/L	EPA 8260B	
Vinyl chloride	0.65	J	1	0.32	1.0	1	ug/L	EPA 8260B	
lient ID: 4103-I3				Lab ID:	C512355-03				
Analyte	Results	Flag	DF	MDL	MRL	NC SWSL	Units	Method	Notes
1,1-Dichloroethane	3.2		1	0.13	1.0	5	ug/L	EPA 8260B	
1,1-Dichloroethene	0.80	J	1	0.21	1.0	5	ug/L	EPA 8260B	
1,2-Dichlorobenzene	0.84	j	1	0.19	1.0	5	ug/L	EPA 8260B	
1,4-Dichlorobenzene	4.7	,	1	0.19	1.0	1	ug/L	EPA 8260B	
Barium - Total	151		1	1.00	10.0	100	ug/L	EPA 6010C	
Benzene	0.58	J	1	0.15	1.0	1	ug/L	EPA 8260B	
Chlorobenzene	18	,	1	0.17	1.0	3	ug/L	EPA 8260B	
Chromium - Total	7.78	J	1	1.40	10.0	10	ug/L	EPA 6010C	
cis-1,2-Dichloroethene	0.87	j	1	0.15	1.0	5	ug/L	EPA 8260B	
Vinyl chloride	0.59	j	1	0.32	1.0	1	ug/L	EPA 8260B	
viii)i diidiide	0.33	,	•	0.52	110	-	ug/ L	2171 02005	
lient ID: 4103-I4				Lab ID:	C512355-04				
Analyte	Results	Flag	DF	MDL	MRL	NC SWSL	Units	Method	Notes
1,4-Dichlorobenzene	0.53	J	1	0.19	1.0	1	ug/L	EPA 8260B	
Barium - Total	376		1	1.00	10.0	100	ug/L	EPA 6010C	
	3.80		1	0.360	1.00	1	ug/L	EPA 6010C	
Cadmium - Total									
Cadmium - Total Chlorobenzene	0.67	J	1	0.17	1.0	3	ug/L	EPA 8260B	
		J J	1 1	0.17 1.40	1.0 10.0	3 10	ug/L ug/L	EPA 8260B EPA 6010C	

ANALYTICAL RESULTS

Description: 4103-I1 **Lab Sample ID:** C512355-01 **Received:** 10/07/15 13:15

Matrix: Ground WaterSampled: 10/06/15 17:35Work Order: C512355

Project: White Street Landfill AppI (Phase I) Sampled By: Gary Simcox

Volatile Organic Compounds by GCMS

^ - ENCO Cary certified analyte [NC 591]

Analyte [CAS Number]	Results	Flag	<u>Units</u>	<u>DF</u>	MDL	MRL	NC SWSL	Method	Analyzed	<u>By</u>	<u>Notes</u>
1,1,1,2-Tetrachloroethane [630-20-6] ^	0.17	U	ug/L	1	0.17	1.0	5	EPA 8260B	10/14/15 18:41	MSZ	
1,1,1-Trichloroethane [71-55-6] ^	0.12	U	ug/L	1	0.12	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
1,1,2,2-Tetrachloroethane [79-34-5] ^	0.28	U	ug/L	1	0.28	1.0	3	EPA 8260B	10/14/15 18:41	MSZ	
1,1,2-Trichloroethane [79-00-5] ^	0.14	U	ug/L	1	0.14	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
1,1-Dichloroethane [75-34-3] ^	1.0	J	ug/L	1	0.13	1.0	5	EPA 8260B	10/14/15 18:41	MSZ	
1,1-Dichloroethene [75-35-4] ^	0.21	U	ug/L	1	0.21	1.0	5	EPA 8260B	10/14/15 18:41	MSZ	
1,2,3-Trichloropropane [96-18-4] ^	0.23	U	ug/L	1	0.23	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
1,2-Dibromo-3-chloropropane [96-12-8] ^	0.48	U	ug/L	1	0.48	1.0	13	EPA 8260B	10/14/15 18:41	MSZ	
1,2-Dibromoethane [106-93-4] ^	0.66	U	ug/L	1	0.66	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
1,2-Dichlorobenzene [95-50-1] ^	0.19	U	ug/L	1	0.19	1.0	5	EPA 8260B	10/14/15 18:41	MSZ	
1,2-Dichloroethane [107-06-2] ^	0.21	U	ug/L	1	0.21	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
1,2-Dichloropropane [78-87-5] ^	0.10	U	ug/L	1	0.10	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
1,4-Dichlorobenzene [106-46-7] ^	3.6		ug/L	1	0.19	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
2-Butanone [78-93-3] ^	1.3	U	ug/L	1	1.3	5.0	100	EPA 8260B	10/14/15 18:41	MSZ	
2-Hexanone [591-78-6] ^	0.88	U	ug/L	1	0.88	5.0	50	EPA 8260B	10/14/15 18:41	MSZ	
4-Methyl-2-pentanone [108-10-1] ^	1.1	U	ug/L	1	1.1	5.0	100	EPA 8260B	10/14/15 18:41	MSZ	
Acetone [67-64-1] ^	1.2	U	ug/L	1	1.2	5.0	100	EPA 8260B	10/14/15 18:41	MSZ	
Acrylonitrile [107-13-1] ^	3.5	U	ug/L	1	3.5	10	200	EPA 8260B	10/14/15 18:41	MSZ	
Benzene [71-43-2] ^	3.3		ug/L	1	0.15	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
Bromochloromethane [74-97-5] ^	0.48	U	ug/L	1	0.48	1.0	3	EPA 8260B	10/14/15 18:41	MSZ	
Bromodichloromethane [75-27-4] ^	0.17	U	ug/L	1	0.17	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
Bromoform [75-25-2] ^	0.22	U	ug/L	1	0.22	1.0	3	EPA 8260B	10/14/15 18:41	MSZ	
Bromomethane [74-83-9] ^	0.14	U	ug/L	1	0.14	1.0	10	EPA 8260B	10/14/15 18:41	MSZ	
Carbon disulfide [75-15-0] ^	1.5	U	ug/L	1	1.5	5.0	100	EPA 8260B	10/14/15 18:41	MSZ	
Carbon tetrachloride [56-23-5] ^	0.17	U	ug/L	1	0.17	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
Chlorobenzene [108-90-7] ^	7.2		ug/L	1	0.17	1.0	3	EPA 8260B	10/14/15 18:41	MSZ	
Chloroethane [75-00-3] ^	0.23	U	ug/L	1	0.23	1.0	10	EPA 8260B	10/14/15 18:41	MSZ	
Chloroform [67-66-3] ^	0.18	U	ug/L	1	0.18	1.0	5	EPA 8260B	10/14/15 18:41	MSZ	
Chloromethane [74-87-3] ^	0.13	U	ug/L	1	0.13	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
cis-1,2-Dichloroethene [156-59-2] ^	0.94	J	ug/L	1	0.15	1.0	5	EPA 8260B	10/14/15 18:41	MSZ	
cis-1,3-Dichloropropene [10061-01-5] ^	0.20	U	ug/L	1	0.20	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
Dibromochloromethane [124-48-1] ^	0.17	U	ug/L	1	0.17	1.0	3	EPA 8260B	10/14/15 18:41	MSZ	
Dibromomethane [74-95-3] ^	0.27	U	ug/L	1	0.27	1.0	10	EPA 8260B	10/14/15 18:41	MSZ	
Ethylbenzene [100-41-4] ^	0.13	U	ug/L	1	0.13	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
Iodomethane [74-88-4] ^	1.7	U	ug/L	1	1.7	5.0	10	EPA 8260B	10/14/15 18:41	MSZ	
Methylene chloride [75-09-2] ^	0.23	U	ug/L	1	0.23	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
Styrene [100-42-5] ^	0.11	U	ug/L	1	0.11	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
Tetrachloroethene [127-18-4] ^	0.17	U	ug/L	1	0.17	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
Toluene [108-88-3] ^	0.14	U	ug/L	1	0.14	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
trans-1,2-Dichloroethene [156-60-5] ^	0.21	U	ug/L	1	0.21	1.0	5	EPA 8260B	10/14/15 18:41	MSZ	
trans-1,3-Dichloropropene [10061-02-6] ^	0.15	U	ug/L	1	0.15	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
trans-1,4-Dichloro-2-butene [110-57-6] ^	0.70	U	ug/L	1	0.70	1.0	100	EPA 8260B	10/14/15 18:41	MSZ	
Trichloroethene [79-01-6] ^	0.15	U	ug/L	1	0.15	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
Trichlorofluoromethane [75-69-4] ^	0.24	U	ug/L	1	0.24	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
Vinyl acetate [108-05-4] ^	0.95	U	ug/L	1	0.95	5.0	50	EPA 8260B	10/14/15 18:41	MSZ	
Vinyl chloride [75-01-4] ^	0.32	U	ug/L	1	0.32	1.0	1	EPA 8260B	10/14/15 18:41	MSZ	
Xylenes (Total) [1330-20-7] ^	0.45	U	ug/L	1	0.45	3.0	5	EPA 8260B	10/14/15 18:41	MSZ	
•			-								

Description: 4103-I1 **Lab Sample ID:** C512355-01 **Received:** 10/07/15 13:15

Matrix:Ground WaterSampled: 10/06/15 17:35Project:White Street Landfill AppI (Phase I)Sampled By: Gary Simcox

Work Order: C512355

Volatile Organic Compounds by GCMS

^ - ENCO Cary certified analyte [NC 591]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL MRL	NC SWSL	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec Limits	Batch	Method	Analyzed	Ву	Notes
4-Bromofluorobenzene	55	1	50.0	110 %	<i>53-136</i>	5J14027	EPA 8260B	10/14/15 18:41	MSZ	
Dibromofluoromethane	50	1	50.0	100 %	67-129	5J14027	EPA 8260B	10/14/15 18:41	MSZ	
Toluene-d8	52	1	50.0	104 %	59-134	5314027	EPA 8260B	10/14/15 18:41	MSZ	

Description: 4103-I1 **Lab Sample ID:** C512355-01 **Received:** 10/07/15 13:15

Matrix:Ground WaterSampled: 10/06/15 17:35Project:White Street Landfill AppI (Phase I)Sampled By: Gary Simcox

Sampled: 10/06/15 17:35 Work Order: C512355 Sampled By: Gary Simcox

Metals by EPA 6000/7000 Series Methods

^ - ENCO Cary certified analyte [NC 591]

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	MRL	NC SWSL	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Mercury [7439-97-6] ^	0.170	U	ug/L	1	0.170	0.200	0.2	EPA 7470A	10/13/15 11:15	BAM	

Description: 4103-I1 **Lab Sample ID:** C512355-01 **Received:** 10/07/15 13:15

Matrix:Ground WaterSampled: 10/06/15 17:35Project:White Street Landfill AppI (Phase I)Sampled By: Gary Simcox

bled: 10/06/15 17:35 **Work Order:** C512355

Metals (total recoverable) by EPA 6000/7000 Series Methods

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	MRL	NC SWSL	<u>Method</u>	<u>Analyzed</u>	Ву	<u>Notes</u>
Arsenic [7440-38-2] ^	6.80	U	ug/L	1	6.80	10.0	10	EPA 6010C	10/12/15 15:09	JDH	
Barium [7440-39-3] ^	484		ug/L	1	1.00	10.0	100	EPA 6010C	10/12/15 15:09	JDH	
Cadmium [7440-43-9] ^	0.360	U	ug/L	1	0.360	1.00	1	EPA 6010C	10/12/15 15:09	JDH	
Chromium [7440-47-3] ^	2.66	J	ug/L	1	1.40	10.0	10	EPA 6010C	10/12/15 15:09	JDH	
Lead [7439-92-1] ^	3.70	J	ug/L	1	3.10	10.0	10	EPA 6010C	10/12/15 15:09	JDH	
Selenium [7782-49-2] ^	5.00	U	ug/L	1	5.00	10.0	10	EPA 6010C	10/12/15 15:09	JDH	
Silver [7440-22-4] ^	1.90	U	ug/L	1	1.90	10.0	10	EPA 6010C	10/12/15 15:09	JDH	

 Description:
 4103-I2
 Lab Sample ID: C512355-02
 Received: 10/07/15 13:15

 Matrix:
 Ground Water
 Sampled: 10/06/15 18:50
 Work Order: C512355

Matrix:Ground WaterSampled: 10/06/15 18:50Project:White Street Landfill AppI (Phase I)Sampled By: Gary Simcox

Volatile Organic Compounds by GCMS

^ - ENCO Cary certified analyte [NC 591]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	MRL	NC SWSL	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1,1,1,2-Tetrachloroethane [630-20-6] ^	0.17	U	ug/L	1	0.17	1.0	5	EPA 8260B	10/14/15 19:10	MSZ	
1,1,1-Trichloroethane [71-55-6] ^	0.12	U	ug/L	1	0.12	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
1,1,2,2-Tetrachloroethane [79-34-5] ^	0.28	U	ug/L	1	0.28	1.0	3	EPA 8260B	10/14/15 19:10	MSZ	
1,1,2-Trichloroethane [79-00-5] ^	0.14	U	ug/L	1	0.14	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
1,1-Dichloroethane [75-34-3] ^	0.13	U	ug/L	1	0.13	1.0	5	EPA 8260B	10/14/15 19:10	MSZ	
1,1-Dichloroethene [75-35-4] ^	0.21	U	ug/L	1	0.21	1.0	5	EPA 8260B	10/14/15 19:10	MSZ	
1,2,3-Trichloropropane [96-18-4] ^	0.23	U	ug/L	1	0.23	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
1,2-Dibromo-3-chloropropane [96-12-8] ^	0.48	U	ug/L	1	0.48	1.0	13	EPA 8260B	10/14/15 19:10	MSZ	
1,2-Dibromoethane [106-93-4] ^	0.66	U	ug/L	1	0.66	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
1,2-Dichlorobenzene [95-50-1] ^	1.4	J	ug/L	1	0.19	1.0	5	EPA 8260B	10/14/15 19:10	MSZ	
1,2-Dichloroethane [107-06-2] ^	0.21	U	ug/L	1	0.21	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
1,2-Dichloropropane [78-87-5] ^	0.10	U	ug/L	1	0.10	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
1,4-Dichlorobenzene [106-46-7] ^	1.7		ug/L	1	0.19	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
2-Butanone [78-93-3] ^	1.3	U	ug/L	1	1.3	5.0	100	EPA 8260B	10/14/15 19:10	MSZ	
2-Hexanone [591-78-6] ^	0.88	U	ug/L	1	0.88	5.0	50	EPA 8260B	10/14/15 19:10	MSZ	
4-Methyl-2-pentanone [108-10-1] ^	1.1	U	ug/L	1	1.1	5.0	100	EPA 8260B	10/14/15 19:10	MSZ	
Acetone [67-64-1] ^	1.2	U	ug/L	1	1.2	5.0	100	EPA 8260B	10/14/15 19:10	MSZ	
Acrylonitrile [107-13-1] ^	3.5	U	ug/L	1	3.5	10	200	EPA 8260B	10/14/15 19:10	MSZ	
Benzene [71-43-2] ^	0.15	U	ug/L	1	0.15	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
Bromochloromethane [74-97-5] ^	0.48	U	ug/L	1	0.48	1.0	3	EPA 8260B	10/14/15 19:10	MSZ	
Bromodichloromethane [75-27-4] ^	0.17	U	ug/L	1	0.17	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
Bromoform [75-25-2] ^	0.22	U	ug/L	1	0.22	1.0	3	EPA 8260B	10/14/15 19:10	MSZ	
Bromomethane [74-83-9] ^	0.14	U	ug/L	1	0.14	1.0	10	EPA 8260B	10/14/15 19:10	MSZ	
Carbon disulfide [75-15-0] ^	1.5	U	ug/L	1	1.5	5.0	100	EPA 8260B	10/14/15 19:10	MSZ	
Carbon tetrachloride [56-23-5] ^	0.17	U	ug/L	1	0.17	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
Chlorobenzene [108-90-7] ^	8.0		ug/L	1	0.17	1.0	3	EPA 8260B	10/14/15 19:10	MSZ	
Chloroethane [75-00-3] ^	0.23	U	ug/L	1	0.23	1.0	10	EPA 8260B	10/14/15 19:10	MSZ	
Chloroform [67-66-3] ^	0.18	U	ug/L	1	0.18	1.0	5	EPA 8260B	10/14/15 19:10	MSZ	
Chloromethane [74-87-3] ^	0.13	U	ug/L	1	0.13	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
cis-1,2-Dichloroethene [156-59-2] ^	0.41	J	ug/L	1	0.15	1.0	5	EPA 8260B	10/14/15 19:10	MSZ	
cis-1,3-Dichloropropene [10061-01-5] ^	0.20	U	ug/L	1	0.20	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
Dibromochloromethane [124-48-1] ^	0.17	U	ug/L	1	0.17	1.0	3	EPA 8260B	10/14/15 19:10	MSZ	
Dibromomethane [74-95-3] ^	0.27	U	ug/L	1	0.27	1.0	10	EPA 8260B	10/14/15 19:10	MSZ	
Ethylbenzene [100-41-4] ^	0.13	U	ug/L	1	0.13	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
Iodomethane [74-88-4] ^	1.7	U	ug/L	1	1.7	5.0	10	EPA 8260B	10/14/15 19:10	MSZ	
Methylene chloride [75-09-2] ^	0.23	U	ug/L	1	0.23	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
Styrene [100-42-5] ^	0.11	U	ug/L	1	0.11	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
Tetrachloroethene [127-18-4] ^	0.17	U	ug/L	1	0.17	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
Toluene [108-88-3] ^	0.50	J	ug/L	1	0.14	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
trans-1,2-Dichloroethene [156-60-5] ^	0.21	U	ug/L	1	0.21	1.0	5	EPA 8260B	10/14/15 19:10	MSZ	
trans-1,3-Dichloropropene [10061-02-6] ^	0.15	U	ug/L	1	0.15	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
trans-1,4-Dichloro-2-butene [110-57-6] ^	0.70	U	ug/L	1	0.70	1.0	100	EPA 8260B	10/14/15 19:10	MSZ	
Trichloroethene [79-01-6] ^	0.15	U	ug/L	1	0.15	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
Trichlorofluoromethane [75-69-4] ^	0.24	U	ug/L	1	0.24	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
Vinyl acetate [108-05-4] ^	0.95	U	ug/L	1	0.95	5.0	50	EPA 8260B	10/14/15 19:10	MSZ	
Vinyl chloride [75-01-4] ^	0.65	j	ug/L	1	0.32	1.0	1	EPA 8260B	10/14/15 19:10	MSZ	
Xylenes (Total) [1330-20-7] ^	0.45	U	ug/L	1	0.45	3.0	5	EPA 8260B	10/14/15 19:10	MSZ	
Surrogates	Results	DF	Spike Lvl	% Rec	% Re	Limits	Batch	Method	Analyzed	Ву	Notes
4-Bromofluorobenzene	53	1	50.0	106 %		-136	5J14027	EPA 8260B	10/14/15 19:10	MSZ	110163
- Distribution obclizerie	33	1	50.0	100 70	33.	130	JJ1 TUZ/	LI /1 0200D	10/17/13 13.10	1.132	

EPA 8260B

5J14027

10/14/15 19:10

MSZ

Dibromofluoromethane

49

50.0

98 %

67-129

Description: 4103-I2 **Lab Sample ID:** C512355-02 **Received:** 10/07/15 13:15

Matrix:Ground WaterSampled: 10/06/15 18:50Project:White Street Landfill AppI (Phase I)Sampled By: Gary Simcox

Work Order: C512355

Volatile Organic Compounds by GCMS

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL N	<u>IRL</u>	NC SWSL	<u>Method</u>	<u>Analyzed</u>	<u>Ву</u>	<u>Notes</u>
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec Lin	nits	Batch	Method	Analyzed	Ву	Notes
Toluene-d8	52	1	50.0	104 %	59-134		5J14027	EPA 8260B	10/14/15 19:10	MSZ	

Description: 4103-I2 **Lab Sample ID:** C512355-02 **Received:** 10/07/15 13:15

Matrix:Ground WaterSampled: 10/06/15 18:50Project:White Street Landfill AppI (Phase I)Sampled By: Gary Simcox

Sampled: 10/06/15 18:50 Work Order: C512355 Sampled By: Gary Simcox

Metals by EPA 6000/7000 Series Methods

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	DF	MDL	MRL	NC SWSL	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Mercury [7439-97-6] ^	0.170	U	ug/L	1	0.170	0.200	0.2	EPA 7470A	10/13/15 11:17	BAM	

Description: 4103-12 **Lab Sample ID:** C512355-02 **Received:** 10/07/15 13:15

Matrix:Ground WaterSampled: 10/06/15 18:50Project:White Street Landfill AppI (Phase I)Sampled By: Gary Simcox

mpled: 10/06/15 18:50 Work Order: C512355

Metals (total recoverable) by EPA 6000/7000 Series Methods

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	MRL	NC SWSL	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Arsenic [7440-38-2] ^	6.80	U	ug/L	1	6.80	10.0	10	EPA 6010C	10/12/15 15:12	JDH	
Barium [7440-39-3] ^	576		ug/L	1	1.00	10.0	100	EPA 6010C	10/12/15 15:12	JDH	
Cadmium [7440-43-9] ^	0.360	U	ug/L	1	0.360	1.00	1	EPA 6010C	10/12/15 15:12	JDH	
Chromium [7440-47-3] ^	29.9		ug/L	1	1.40	10.0	10	EPA 6010C	10/12/15 15:12	JDH	
Lead [7439-92-1] ^	4.30	J	ug/L	1	3.10	10.0	10	EPA 6010C	10/12/15 15:12	JDH	
Selenium [7782-49-2] ^	5.00	U	ug/L	1	5.00	10.0	10	EPA 6010C	10/12/15 15:12	JDH	
Silver [7440-22-4] ^	1.90	U	ug/L	1	1.90	10.0	10	EPA 6010C	10/12/15 15:12	JDH	

Work Order: C512355

10/14/15 06:12

REF

Description: 4103-I3 **Lab Sample ID:** C512355-03 **Received:** 10/07/15 13:15

Matrix:Ground WaterSampled: 10/07/15 08:40Project:White Street Landfill AppI (Phase I)Sampled By: Gary Simcox

Volatile Organic Compounds by GCMS

^ - ENCO Cary certified analyte [NC 591]

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	MRL	NC SWSL	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1,1,1,2-Tetrachloroethane [630-20-6] ^	0.17	U	ug/L	1	0.17	1.0	5	EPA 8260B	10/14/15 06:12	REF	
1,1,1-Trichloroethane [71-55-6] ^	0.12	U	ug/L	1	0.12	1.0	1	EPA 8260B	10/14/15 06:12	REF	
1,1,2,2-Tetrachloroethane [79-34-5] ^	0.28	U	ug/L	1	0.28	1.0	3	EPA 8260B	10/14/15 06:12	REF	
1,1,2-Trichloroethane [79-00-5] ^	0.14	U	ug/L	1	0.14	1.0	1	EPA 8260B	10/14/15 06:12	REF	
1,1-Dichloroethane [75-34-3] ^	3.2	J	ug/L	1	0.13	1.0	5	EPA 8260B	10/14/15 06:12	REF	
1,1-Dichloroethene [75-35-4] ^	0.80	J	ug/L	1	0.21	1.0	5	EPA 8260B	10/14/15 06:12	REF	
1,2,3-Trichloropropane [96-18-4] ^	0.23	U	ug/L	1	0.23	1.0	1	EPA 8260B	10/14/15 06:12	REF	
1,2-Dibromo-3-chloropropane [96-12-8] ^	0.48	U	ug/L	1	0.48	1.0	13	EPA 8260B	10/14/15 06:12	REF	
1,2-Dibromoethane [106-93-4] ^	0.66	U	ug/L	1	0.66	1.0	1	EPA 8260B	10/14/15 06:12	REF	
1,2-Dichlorobenzene [95-50-1] ^	0.84	J	ug/L	1	0.19	1.0	5	EPA 8260B	10/14/15 06:12	REF	
1,2-Dichloroethane [107-06-2] ^	0.21	U	ug/L	1	0.21	1.0	1	EPA 8260B	10/14/15 06:12	REF	
1,2-Dichloropropane [78-87-5] ^	0.10	U	ug/L	1	0.10	1.0	1	EPA 8260B	10/14/15 06:12	REF	
1,4-Dichlorobenzene [106-46-7] ^	4.7		ug/L	1	0.19	1.0	1	EPA 8260B	10/14/15 06:12	REF	
2-Butanone [78-93-3] ^	1.3	U	ug/L	1	1.3	5.0	100	EPA 8260B	10/14/15 06:12	REF	
2-Hexanone [591-78-6] ^	0.88	U	ug/L	1	0.88	5.0	50	EPA 8260B	10/14/15 06:12	REF	
4-Methyl-2-pentanone [108-10-1] ^	1.1	U	ug/L	1	1.1	5.0	100	EPA 8260B	10/14/15 06:12	REF	
Acetone [67-64-1] ^	1.2	U	ug/L	1	1.2	5.0	100	EPA 8260B	10/14/15 06:12	REF	
Acrylonitrile [107-13-1] ^	3.5	U	ug/L	1	3.5	10	200	EPA 8260B	10/14/15 06:12	REF	
Benzene [71-43-2] ^	0.58	J	ug/L	1	0.15	1.0	1	EPA 8260B	10/14/15 06:12	REF	
Bromochloromethane [74-97-5] ^	0.48	U	ug/L	1	0.48	1.0	3	EPA 8260B	10/14/15 06:12	REF	
Bromodichloromethane [75-27-4] ^	0.17	U	ug/L	1	0.17	1.0	1	EPA 8260B	10/14/15 06:12	REF	
Bromoform [75-25-2] ^	0.22	U	ug/L	1	0.22	1.0	3	EPA 8260B	10/14/15 06:12	REF	
Bromomethane [74-83-9] ^	0.14	U	ug/L	1	0.14	1.0	10	EPA 8260B	10/14/15 06:12	REF	
Carbon disulfide [75-15-0] ^	1.5	U	ug/L	1	1.5	5.0	100	EPA 8260B	10/14/15 06:12	REF	
Carbon tetrachloride [56-23-5] ^	0.17	U	ug/L	1	0.17	1.0	1	EPA 8260B	10/14/15 06:12	REF	
Chlorobenzene [108-90-7] ^	18		ug/L	1	0.17	1.0	3	EPA 8260B	10/14/15 06:12	REF	
Chloroethane [75-00-3] ^	0.23	U	ug/L	1	0.23	1.0	10	EPA 8260B	10/14/15 06:12	REF	
Chloroform [67-66-3] ^	0.18	U	ug/L	1	0.18	1.0	5	EPA 8260B	10/14/15 06:12	REF	
Chloromethane [74-87-3] ^	0.13	U	ug/L	1	0.13	1.0	1	EPA 8260B	10/14/15 06:12	REF	
cis-1,2-Dichloroethene [156-59-2] ^	0.87	j	ug/L	1	0.15	1.0	5	EPA 8260B	10/14/15 06:12	REF	
cis-1,3-Dichloropropene [10061-01-5] ^	0.20	U	ug/L	1	0.20	1.0	1	EPA 8260B	10/14/15 06:12	REF	
Dibromochloromethane [124-48-1] ^	0.17	U	ug/L	1	0.17	1.0	3	EPA 8260B	10/14/15 06:12	REF	
Dibromomethane [74-95-3] ^	0.27	U	ug/L	1	0.27	1.0	10	EPA 8260B	10/14/15 06:12	REF	
Ethylbenzene [100-41-4] ^	0.13	U	ug/L	1	0.13	1.0	1	EPA 8260B	10/14/15 06:12	REF	
Iodomethane [74-88-4] ^	1.7	U	ug/L	1	1.7	5.0	10	EPA 8260B	10/14/15 06:12	REF	
Methylene chloride [75-09-2] ^	0.23	U	ug/L	1	0.23	1.0	1	EPA 8260B	10/14/15 06:12	REF	
Styrene [100-42-5] ^	0.23	U	ug/L	1	0.11	1.0	1	EPA 8260B	10/14/15 06:12	REF	
Tetrachloroethene [127-18-4] ^	0.17	U	ug/L	1	0.17	1.0	1	EPA 8260B	10/14/15 06:12	REF	
Toluene [108-88-3] ^	0.17	U			0.17	1.0	1	EPA 8260B	10/14/15 06:12	REF	
trans-1,2-Dichloroethene [156-60-5] ^	0.14	U	ug/L	1	0.14	1.0	5	EPA 8260B		REF	
			ug/L	1					10/14/15 06:12		
trans-1,3-Dichloropropene [10061-02-6] ^ trans-1,4-Dichloro-2-butene [110-57-6] ^	0.15	U	ug/L	1	0.15	1.0	1	EPA 8260B	10/14/15 06:12	REF	
,	0.70	U	ug/L	1	0.70	1.0	100	EPA 8260B	10/14/15 06:12	REF	
Trichloroethene [79-01-6] ^	0.15	U	ug/L	1	0.15	1.0	1	EPA 8260B	10/14/15 06:12	REF	
Trichlorofluoromethane [75-69-4] ^	0.24	U	ug/L	1	0.24	1.0	1	EPA 8260B	10/14/15 06:12	REF	
Vinyl acetate [108-05-4] ^	0.95	U	ug/L	1	0.95	5.0	50	EPA 8260B	10/14/15 06:12	REF	
Vinyl chloride [75-01-4] ^	0.59	J 	ug/L	1	0.32	1.0	1	EPA 8260B	10/14/15 06:12	REF	
Xylenes (Total) [1330-20-7] ^	0.45	U	ug/L	1	0.45	3.0	5	EPA 8260B	10/14/15 06:12	REF	
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec	Limits	Batch	Method	Analyzed	Ву	Notes
4-Bromofluorobenzene	48	1	50.0	95 %	<i>53</i> -	-136	5J13019	EPA 8260B	10/14/15 06:12	REF	

50.0

107 %

67-129

5313019

EPA 8260B

Dibromofluoromethane

Description: 4103-I3 **Lab Sample ID:** C512355-03 **Received:** 10/07/15 13:15

Matrix:Ground WaterSampled: 10/07/15 08:40Project:White Street Landfill AppI (Phase I)Sampled By: Gary Simcox

Work Order: C512355

Volatile Organic Compounds by GCMS

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL !	<u>IRL</u>	NC SWSL	<u>Method</u>	<u>Analyzed</u>	<u>Ву</u>	<u>Notes</u>
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec Lin	nits	Batch	Method	Analyzed	Ву	Notes
Toluene-d8	49	1	50.0	97 %	59-134		5313019	EPA 8260B	10/14/15 06:12	REF	

Description: 4103-I3 **Lab Sample ID:** C512355-03 **Received:** 10/07/15 13:15

Matrix:Ground WaterSampled: 10/07/15 08:40Project:White Street Landfill AppI (Phase I)Sampled By: Gary Simcox

Sampled: 10/07/15 08:40 Work Order: C512355 Sampled By: Gary Simcox

Metals by EPA 6000/7000 Series Methods

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	MRL	NC SWSL	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Mercury [7439-97-6] ^	0.170	U	ug/L	1	0.170	0.200	0.2	EPA 7470A	10/13/15 11:19	BAM	

Description: 4103-I3 **Lab Sample ID:** C512355-03 **Received:** 10/07/15 13:15

Matrix:Ground WaterSampled: 10/07/15 08:40Project:White Street Landfill AppI (Phase I)Sampled By: Gary Simcox

led: 10/07/15 08:40 Work Order: C512355

Metals (total recoverable) by EPA 6000/7000 Series Methods

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	<u>DF</u>	<u>MDL</u>	MRL	NC SWSL	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Arsenic [7440-38-2] ^	6.80	U	ug/L	1	6.80	10.0	10	EPA 6010C	10/12/15 15:15	JDH	
Barium [7440-39-3] ^	151		ug/L	1	1.00	10.0	100	EPA 6010C	10/12/15 15:15	JDH	
Cadmium [7440-43-9] ^	0.360	U	ug/L	1	0.360	1.00	1	EPA 6010C	10/12/15 15:15	JDH	
Chromium [7440-47-3] ^	7.78	J	ug/L	1	1.40	10.0	10	EPA 6010C	10/12/15 15:15	JDH	
Lead [7439-92-1] ^	3.10	U	ug/L	1	3.10	10.0	10	EPA 6010C	10/12/15 15:15	JDH	
Selenium [7782-49-2] ^	5.00	U	ug/L	1	5.00	10.0	10	EPA 6010C	10/12/15 15:15	JDH	
Silver [7440-22-4] ^	1.90	U	ug/L	1	1.90	10.0	10	EPA 6010C	10/12/15 15:15	JDH	

10/14/15 06:41

REF

 Description:
 4103-I4
 Lab Sample ID: C512355-04
 Received: 10/07/15 13:15

 Matrix:
 Ground Water
 Sampled: 10/07/15 10:45
 Work Order: C512355

Matrix:Ground WaterSampled: 10/07/15 10:45Project:White Street Landfill AppI (Phase I)Sampled By: Gary Simcox

Volatile Organic Compounds by GCMS

^ - ENCO Cary certified analyte [NC 591]

Analyte [CAS Number]	<u>Results</u>	Flag	<u>Units</u>	<u>DF</u>	MDL	MRL	NC SWSL	<u>Method</u>	<u>Analyzed</u>	<u>Ву</u>	<u>Notes</u>
1,1,1,2-Tetrachloroethane [630-20-6] ^	0.17	U	ug/L	1	0.17	1.0	5	EPA 8260B	10/14/15 06:41	REF	
1,1,1-Trichloroethane [71-55-6] ^	0.12	U	ug/L	1	0.12	1.0	1	EPA 8260B	10/14/15 06:41	REF	
1,1,2,2-Tetrachloroethane [79-34-5] ^	0.28	U	ug/L	1	0.28	1.0	3	EPA 8260B	10/14/15 06:41	REF	
1,1,2-Trichloroethane [79-00-5] ^	0.14	U	ug/L	1	0.14	1.0	1	EPA 8260B	10/14/15 06:41	REF	
1,1-Dichloroethane [75-34-3] ^	0.13	U	ug/L	1	0.13	1.0	5	EPA 8260B	10/14/15 06:41	REF	
1,1-Dichloroethene [75-35-4] ^	0.21	U	ug/L	1	0.21	1.0	5	EPA 8260B	10/14/15 06:41	REF	
1,2,3-Trichloropropane [96-18-4] ^	0.23	U	ug/L	1	0.23	1.0	1	EPA 8260B	10/14/15 06:41	REF	
1,2-Dibromo-3-chloropropane [96-12-8] ^	0.48	U	ug/L	1	0.48	1.0	13	EPA 8260B	10/14/15 06:41	REF	
1,2-Dibromoethane [106-93-4] ^	0.66	U	ug/L	1	0.66	1.0	1	EPA 8260B	10/14/15 06:41	REF	
1,2-Dichlorobenzene [95-50-1] ^	0.19	U	ug/L	1	0.19	1.0	5	EPA 8260B	10/14/15 06:41	REF	
1,2-Dichloroethane [107-06-2] ^	0.21	U	ug/L	1	0.21	1.0	1	EPA 8260B	10/14/15 06:41	REF	
1,2-Dichloropropane [78-87-5] ^	0.10	U	ug/L	1	0.10	1.0	1	EPA 8260B	10/14/15 06:41	REF	
1,4-Dichlorobenzene [106-46-7] ^	0.53	J	ug/L	1	0.19	1.0	1	EPA 8260B	10/14/15 06:41	REF	
2-Butanone [78-93-3] ^	1.3	U	ug/L	1	1.3	5.0	100	EPA 8260B	10/14/15 06:41	REF	
2-Hexanone [591-78-6] ^	0.88	U	ug/L	1	0.88	5.0	50	EPA 8260B	10/14/15 06:41	REF	
4-Methyl-2-pentanone [108-10-1] ^	1.1	U	ug/L	1	1.1	5.0	100	EPA 8260B	10/14/15 06:41	REF	
Acetone [67-64-1] ^	1.2	U	ug/L	1	1.2	5.0	100	EPA 8260B	10/14/15 06:41	REF	
Acrylonitrile [107-13-1] ^	3.5	U	ug/L	1	3.5	10	200	EPA 8260B	10/14/15 06:41	REF	
Benzene [71-43-2] ^	0.15	U	ug/L	1	0.15	1.0	1	EPA 8260B	10/14/15 06:41	REF	
Bromochloromethane [74-97-5] ^	0.48	U	ug/L	1	0.48	1.0	3	EPA 8260B	10/14/15 06:41	REF	
Bromodichloromethane [75-27-4] ^	0.17	U	ug/L	1	0.17	1.0	1	EPA 8260B	10/14/15 06:41	REF	
Bromoform [75-25-2] ^	0.22	U	ug/L	1	0.22	1.0	3	EPA 8260B	10/14/15 06:41	REF	
Bromomethane [74-83-9] ^	0.14	U	ug/L	1	0.14	1.0	10	EPA 8260B	10/14/15 06:41	REF	
Carbon disulfide [75-15-0] ^	1.5	U	ug/L	1	1.5	5.0	100	EPA 8260B	10/14/15 06:41	REF	
Carbon tetrachloride [56-23-5] ^	0.17	U	ug/L	1	0.17	1.0	1	EPA 8260B	10/14/15 06:41	REF	
Chlorobenzene [108-90-7] ^	0.67	J	ug/L	1	0.17	1.0	3	EPA 8260B	10/14/15 06:41	REF	
Chloroethane [75-00-3] ^	0.23	U	ug/L	1	0.23	1.0	10	EPA 8260B	10/14/15 06:41	REF	
Chloroform [67-66-3] ^	0.18	U	ug/L	1	0.18	1.0	5	EPA 8260B	10/14/15 06:41	REF	
Chloromethane [74-87-3] ^	0.13	U	ug/L	1	0.13	1.0	1	EPA 8260B	10/14/15 06:41	REF	
cis-1,2-Dichloroethene [156-59-2] ^	0.15	U	ug/L	1	0.15	1.0	5	EPA 8260B	10/14/15 06:41	REF	
cis-1,3-Dichloropropene [10061-01-5] ^	0.20	U	ug/L	1	0.20	1.0	1	EPA 8260B	10/14/15 06:41	REF	
Dibromochloromethane [124-48-1] ^	0.17	U	ug/L	1	0.17	1.0	3	EPA 8260B	10/14/15 06:41	REF	
Dibromomethane [74-95-3] ^	0.27	U	ug/L	1	0.27	1.0	10	EPA 8260B	10/14/15 06:41	REF	
Ethylbenzene [100-41-4] ^	0.13	U	ug/L	1	0.13	1.0	1	EPA 8260B	10/14/15 06:41	REF	
Iodomethane [74-88-4] ^	1.7	U	ug/L	1	1.7	5.0	10	EPA 8260B	10/14/15 06:41	REF	
Methylene chloride [75-09-2] ^	0.23	U	ug/L	1	0.23	1.0	1	EPA 8260B	10/14/15 06:41	REF	
Styrene [100-42-5] ^	0.11	U	ug/L	1	0.11	1.0	1	EPA 8260B	10/14/15 06:41	REF	
Tetrachloroethene [127-18-4] ^	0.17	U	ug/L	1	0.17	1.0	1	EPA 8260B	10/14/15 06:41	REF	
Toluene [108-88-3] ^	0.14	U	ug/L	1	0.14	1.0	1	EPA 8260B	10/14/15 06:41	REF	
trans-1,2-Dichloroethene [156-60-5] ^	0.21	U	ug/L	1	0.21	1.0	5	EPA 8260B	10/14/15 06:41	REF	
trans-1,3-Dichloropropene [10061-02-6] ^	0.15	U	ug/L	1	0.15	1.0	1	EPA 8260B	10/14/15 06:41	REF	
trans-1,4-Dichloro-2-butene [110-57-6] ^	0.70	U	ug/L	1	0.70	1.0	100	EPA 8260B	10/14/15 06:41	REF	
Trichloroethene [79-01-6] ^	0.15	U	ug/L	1	0.15	1.0	1	EPA 8260B	10/14/15 06:41	REF	
Trichlorofluoromethane [75-69-4] ^	0.24	U	ug/L	1	0.24	1.0	1	EPA 8260B	10/14/15 06:41	REF	
Vinyl acetate [108-05-4] ^	0.95	U	ug/L	1	0.95	5.0	50	EPA 8260B	10/14/15 06:41	REF	
Vinyl chloride [75-01-4] ^	0.32	U	ug/L	1	0.32	1.0	1	EPA 8260B	10/14/15 06:41	REF	
Xylenes (Total) [1330-20-7] ^	0.45	U	ug/L	1	0.45	3.0	5	EPA 8260B	10/14/15 06:41	REF	
Company and an			c-: · ·	0/ 5	a: =	- 1 to 2	n-· ·		4	-	NI-2
Surrogates 4 Promofivorobonzono	Results	DF ,	Spike Lvl	% Rec		Limits	Batch	Method FDA 8360B	Analyzed	Ву	Notes
4-Bromofluorobenzene	47	1	50.0	93 %	53.	-136	5313019	EPA 8260B	10/14/15 06:41	REF	

107 %

67-129

5313019

EPA 8260B

50.0

Dibromofluoromethane

Description: 4103-I4 **Lab Sample ID:** C512355-04 **Received:** 10/07/15 13:15

Matrix:Ground WaterSampled: 10/07/15 10:45Project:White Street Landfill AppI (Phase I)Sampled By: Gary Simcox

Work Order: C512355

Volatile Organic Compounds by GCMS

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL M	<u>IRL</u>	NC SWSL	<u>Method</u>	<u>Analyzed</u>	<u>Ву</u>	<u>Notes</u>
Surrogates	Results	DF	Spike Lvl	% Rec	% Rec Lin	nits	Batch	Method	Analyzed	Ву	Notes
Toluene-d8	48	1	50.0	96 %	59-134		5J13019	EPA 8260B	10/14/15 06:41	REF	

Description: 4103-I4 **Lab Sample ID:** C512355-04 **Received:** 10/07/15 13:15

Matrix:Ground WaterSampled: 10/07/15 10:45Project:White Street Landfill AppI (Phase I)Sampled By: Gary Simcox

bled: 10/07/15 10:45 **Work Order:** C512355

Metals by EPA 6000/7000 Series Methods

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	MRL	NC SWSL	<u>Method</u>	Analyzed	By	<u>Notes</u>
Mercury [7439-97-6] ^	0.170	U	ug/L	1	0.170	0.200	0.2	EPA 7470A	10/13/15 11:23	BAM	

Description: 4103-I4 **Lab Sample ID:** C512355-04 **Received:** 10/07/15 13:15

Matrix:Ground WaterSampled: 10/07/15 10:45Project:White Street Landfill AppI (Phase I)Sampled By: Gary Simcox

Work Order: C512355

Metals (total recoverable) by EPA 6000/7000 Series Methods

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	MRL	NC SWSL	Method	<u>Analyzed</u>	By	<u>Notes</u>
Arsenic [7440-38-2] ^	6.80	U	ug/L	1	6.80	10.0	10	EPA 6010C	10/12/15 15:23	JDH	
Barium [7440-39-3] ^	376		ug/L	1	1.00	10.0	100	EPA 6010C	10/12/15 15:23	JDH	
Cadmium [7440-43-9] ^	3.80		ug/L	1	0.360	1.00	1	EPA 6010C	10/12/15 15:23	JDH	
Chromium [7440-47-3] ^	4.61	J	ug/L	1	1.40	10.0	10	EPA 6010C	10/12/15 15:23	JDH	
Lead [7439-92-1] ^	3.70	J	ug/L	1	3.10	10.0	10	EPA 6010C	10/12/15 15:23	JDH	
Selenium [7782-49-2] ^	5.00	U	ug/L	1	5.00	10.0	10	EPA 6010C	10/12/15 15:23	JDH	
Silver [7440-22-4] ^	1.90	U	ug/L	1	1.90	10.0	10	EPA 6010C	10/12/15 15:23	JDH	

Volatile Organic Compounds by GCMS - Quality Control

Batch 5J13019 - EPA 5030B_MS

Blank (5J13019-BLK1)

Prepared: 10/13/2015 12:41 Analyzed: 10/13/2015 23:32

Result	Flag	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
0.17	U	1.0	ug/L							
0.12	U	1.0	ug/L							
0.28	U	1.0	ug/L							
0.14	U	1.0	ug/L							
0.13	U	1.0	ug/L							
0.21	U	1.0	ug/L							
0.23	U	1.0	ug/L							
0.48	U	1.0	ug/L							
0.66	U	1.0	ug/L							
0.19	U	1.0	ug/L							
0.21	U	1.0	ug/L							
0.10	U	1.0	ug/L							
0.19	U	1.0	ug/L							
1.3	U	5.0	ug/L							
0.88	U	5.0	ug/L							
1.1	U	5.0	ug/L							
1.2	U	5.0	ug/L							
3.5	U	10	ug/L							
0.15	U	1.0	ug/L							
0.48	U	1.0	ug/L							
0.17	U	1.0	ug/L							
0.22	U	1.0	ug/L							
0.14	U	1.0	ug/L							
1.5	U	5.0	ug/L							
0.17	U	1.0	ug/L							
0.17	U	1.0	ug/L							
0.23	U	1.0	ug/L							
0.18	U	1.0	ug/L							
0.13	U	1.0	ug/L							
0.15	U	1.0	ug/L							
0.20	U	1.0	ug/L							
0.17	U	1.0	ug/L							
0.27	U	1.0	ug/L							
0.13	U	1.0	ug/L							
1.7	U	5.0	ug/L							
0.23	U	1.0	ug/L							
0.11	U	1.0	ug/L							
0.17	U	1.0	ug/L							
0.14	U	1.0	ug/L							
0.21	U	1.0	ug/L							
0.15	U	1.0	ug/L							
0.70	U	1.0	ug/L							
0.15	U	1.0	ug/L							
0.24	U	1.0	ug/L							
0.95	U	5.0	ug/L							
0.32	U	1.0	ug/L							
0.45	U	3.0	ug/L							
	0.17 0.12 0.28 0.14 0.13 0.21 0.23 0.48 0.66 0.19 0.21 0.10 0.19 1.3 0.88 1.1 1.2 3.5 0.15 0.48 0.17 0.22 0.14 1.5 0.17 0.17 0.23 0.18 0.13 0.15 0.20 0.17 0.27 0.13 1.7 0.23 0.18 0.13 0.15 0.20 0.17 0.27 0.11 0.17 0.23 0.18 0.13 0.15 0.20 0.17 0.27 0.13 1.7 0.23 0.11 0.17 0.24 0.95 0.32	0.17 U 0.12 U 0.28 U 0.14 U 0.13 U 0.21 U 0.23 U 0.48 U 0.66 U 0.19 U 0.21 U 0.10 U 0.19 U 1.3 U 0.88 U 1.1 U 1.2 U 3.5 U 0.15 U 0.48 U 0.17 U 0.22 U 0.14 U 1.5 U 0.17 U 0.22 U 0.14 U 1.5 U 0.17 U 0.23 U 0.18 U 0.17 U 0.23 U 0.19 U 0.11 U 0.21 U 0.21 U 0.21 U 0.21 U 0.22 U 0.24 U 0.24 U 0.25 U 0.26 U 0.27 U 0.19 U 0.29 U 0.19 U 0.19 U 0.19 U 0.29 U 0.19 U 0	0.17 U 1.0 0.12 U 1.0 0.28 U 1.0 0.14 U 1.0 0.13 U 1.0 0.21 U 1.0 0.23 U 1.0 0.48 U 1.0 0.66 U 1.0 0.19 U 1.0 0.10 U 1.0 0.19 U 1.0 1.3 U 5.0 0.88 U 5.0 1.1 U 5.0 1.2 U 5.0 3.5 U 10 0.15 U 1.0 0.17 U 1.0 0.17 U 1.0 0.18 U 1.0 0.18 U 1.0 0.19 U 1.0 0.11 U 1.0 0.12 U 1.0 0.11 U 1.0 0.12 U 1.0 0.14 U 1.0 0.15 U 1.0 0.17 U 1.0 0.17 U 1.0 0.18 U 1.0 0.18 U 1.0 0.19 U 1.0 0.11 U 1.0 0.11 U 1.0 0.12 U 1.0 0.11 U 1.0 0.12 U 1.0 0.13 U 1.0 0.15 U 1.0 0.16 U 1.0 0.17 U 1.0 0.19 U 1.0 0.19 U 1.0 0.10 U 1.0 0.11 U 1.0 0.11 U 1.0 0.12 U 1.0 0.13 U 1.0 0.15 U 1.0 0.15 U 1.0 0.16 U 1.0 0.17 U 1.0 0.19 U 1.0 0.19 U 1.0 0.10 U 1.0 0.11 U 1.0 0.12 U 1.0 0.15 U 1.0 0.19 U 5.0 0.32 U 1.0	0.17 U 1.0 ug/L 0.12 U 1.0 ug/L 0.28 U 1.0 ug/L 0.14 U 1.0 ug/L 0.13 U 1.0 ug/L 0.21 U 1.0 ug/L 0.48 U 1.0 ug/L 0.66 U 1.0 ug/L 0.19 U 1.0 ug/L 0.10 ug/L 0.1 u	Result Flag MRL Units Level	Result Flag MRL Units Level Result	Result Flag MRL Units Level Result WREC	Result Flag MRL	Result Flag	Result Flag

Volatile Organic Compounds by GCMS - Quality Control

Batch 5J13019 - EPA 5030B_MS

Blank (5J13019-BLK1) Continued

Prepared: 10/13/2015 12:41 Analyzed: 10/13/2015 23:32

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Surrogate: Dibromofluoromethane	53			ug/L	50.0		105	67-129			
Surrogate: Toluene-d8	49			ug/L	50.0		99	59-134			

LCS (5J13019-BS1)

Prepared: 10/13/2015 12:41 Analyzed: 10/14/2015 00:01

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
1,1-Dichloroethene	21		1.0	ug/L	20.0		107	75-133			
Benzene	21		1.0	ug/L	20.0		104	81-134			
Chlorobenzene	20		1.0	ug/L	20.0		98	83-117			
Toluene	21		1.0	ug/L	20.0		106	71-118			
Trichloroethene	19		1.0	ug/L	20.0		94	74-119			

Matrix Spike (5J13019-MS1)

Source: C513226-02

Prepared: 10/13/2015 12:41 Analyzed: 10/14/2015 00:29

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
1,1-Dichloroethene	22		1.0	ug/L	20.0	0.21 U	108	75-133			
Benzene	21		1.0	ug/L	20.0	0.15 U	106	81-134			
Chlorobenzene	20		1.0	ug/L	20.0	0.17 U	100	83-117			
Toluene	21		1.0	ug/L	20.0	0.14 U	106	71-118			
Trichloroethene	20		1.0	ug/L	20.0	0.15 U	98	74-119			

Matrix Spike Dup (5J13019-MSD1)

Source: C513226-02

Prepared: 10/13/2015 12:41 Analyzed: 10/14/2015 00:58

				Spike	Source		%REC		RPD	
Analyte	Result	Flag MR	L Units	Level	Result	%REC	Limits	RPD	Limit	Notes
1,1-Dichloroethene	21	1.0	ug/L	20.0	0.21 U	106	75-133	2	20	
Benzene	21	1.0	ug/L	20.0	0.15 U	105	81-134	0.9	17	
Chlorobenzene	20	1.0	ug/L	20.0	0.17 U	98	83-117	2	16	
Toluene	21	1.0	ug/L	20.0	0.14 U	105	71-118	0.8	17	
Trichloroethene	19	1.0	ug/L	20.0	0.15 U	95	74-119	3	22	

Batch 5J14027 - EPA 5030B_MS

Blank (5J14027-BLK1)

Prepared: 10/14/2015 13:13 Analyzed: 10/14/2015 13:18

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
1,1,1,2-Tetrachloroethane	0.17	U	1.0	ug/L							
1,1,1-Trichloroethane	0.12	U	1.0	ug/L							
1,1,2,2-Tetrachloroethane	0.28	U	1.0	ug/L							
1,1,2-Trichloroethane	0.14	U	1.0	ug/L							
1,1-Dichloroethane	0.13	U	1.0	ug/L							
1,1-Dichloroethene	0.21	U	1.0	ug/L							
1,2,3-Trichloropropane	0.23	U	1.0	ug/L							
1,2-Dibromo-3-chloropropane	0.48	U	1.0	ug/L							
1,2-Dibromoethane	0.66	U	1.0	ug/L							
1,2-Dichlorobenzene	0.19	U	1.0	ug/L							

Volatile Organic Compounds by GCMS - Quality Control

Batch 5J14027 - EPA 5030B_MS

Blank (5J14027-BLK1) Continued

Prepared: 10/14/2015 13:13 Analyzed: 10/14/2015 13:18

Prepared: 10/14/2015 13:13 Analyzed: 10/14/2015 13:48

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
1,2-Dichloroethane	0.21	U	1.0	ug/L							
1,2-Dichloropropane	0.10	U	1.0	ug/L							
1,4-Dichlorobenzene	0.19	U	1.0	ug/L							
2-Butanone	1.3	U	5.0	ug/L							
2-Hexanone	0.88	U	5.0	ug/L							
4-Methyl-2-pentanone	1.1	U	5.0	ug/L							
Acetone	1.2	U	5.0	ug/L							
Acrylonitrile	3.5	U	10	ug/L							
Benzene	0.15	U	1.0	ug/L							
Bromochloromethane	0.48	U	1.0	ug/L							
Bromodichloromethane	0.17	U	1.0	ug/L							
Bromoform	0.22	U	1.0	ug/L							
Bromomethane	0.14	U	1.0	ug/L							
Carbon disulfide	1.5	U	5.0	ug/L							
Carbon tetrachloride	0.17	U	1.0	ug/L							
Chlorobenzene	0.17	U	1.0	ug/L							
Chloroethane	0.23	U	1.0	ug/L							
Chloroform	0.18	U	1.0	ug/L							
Chloromethane	0.13	U	1.0	ug/L							
cis-1,2-Dichloroethene	0.15	U	1.0	ug/L							
cis-1,3-Dichloropropene	0.20	U	1.0	ug/L							
Dibromochloromethane	0.17	U	1.0	ug/L							
Dibromomethane	0.27	U	1.0	ug/L							
Ethylbenzene	0.13	U	1.0	ug/L							
Iodomethane	1.7	U	5.0	ug/L							
Methylene chloride	0.23	U	1.0	ug/L							
Styrene	0.11	U	1.0	ug/L							
Tetrachloroethene	0.17	U	1.0	ug/L							
Toluene	0.14	U	1.0	ug/L							
trans-1,2-Dichloroethene	0.21	U	1.0	ug/L							
trans-1,3-Dichloropropene	0.15	U	1.0	ug/L							
trans-1,4-Dichloro-2-butene	0.70	U	1.0	ug/L							
Trichloroethene	0.15	U	1.0	ug/L							
Trichlorofluoromethane	0.24	U	1.0	ug/L							
Vinyl acetate	0.95	U	5.0	ug/L							
Vinyl chloride	0.32	U	1.0	ug/L							
Xylenes (Total)	0.45	U	3.0	ug/L							
Surrogate: 4-Bromofluorobenzene	54			ug/L	50.0		108	53-136			
Surrogate: Dibromofluoromethane	49			ug/L	50.0		98	<i>67-129</i>			
Surrogate: Toluene-d8	51			ug/L	50.0		102	<i>59-134</i>			

LCS (5J14027-BS1)

Spike Source %REC RPD MRL %REC RPD Limit Analyte Result Flag Units Level Result Limits Notes 1,1-Dichloroethene 84 75-133 17 1.0 20.0 ug/L Benzene 17 1.0 ug/L 20.0 86 81-134 Chlorobenzene 18 1.0 20.0 91 83-117 ug/L 17 Toluene 1.0 ug/L 20.0 85 71-118

Volatile Organic Compounds by GCMS - Quality Control

Batch 5J14027 - EPA 5030B_MS

LCS (5J14027-BS1) Continued

Prepared: 10/14/2015 13:13 Analyzed: 10/14/2015 13:48

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Trichloroethene	19		1.0	ug/L	20.0		95	74-119			

Matrix Spike (5J14027-MS1)

Source: C513226-05

Prepared: 10/14/2015 13:13 Analyzed: 10/14/2015 14:17

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
1,1-Dichloroethene	17		1.0	ug/L	20.0	0.21 U	87	75-133			
Benzene	17		1.0	ug/L	20.0	0.15 U	87	81-134			
Chlorobenzene	18		1.0	ug/L	20.0	0.17 U	90	83-117			
Toluene	18		1.0	ug/L	20.0	0.14 U	89	71-118			
Trichloroethene	19		1.0	ug/L	20.0	0.15 U	95	74-119			

Matrix Spike Dup (5J14027-MSD1)

Source: C513226-05

Prepared: 10/14/2015 13:13 Analyzed: 10/14/2015 14:46

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
1,1-Dichloroethene	17		1.0	ug/L	20.0	0.21 U	85	75-133	3	20	
Benzene	17		1.0	ug/L	20.0	0.15 U	87	81-134	0.1	17	
Chlorobenzene	18		1.0	ug/L	20.0	0.17 U	92	83-117	2	16	
Toluene	17		1.0	ug/L	20.0	0.14 U	87	71-118	2	17	
Trichloroethene	18		1.0	ug/L	20.0	0.15 U	92	74-119	3	22	

Metals by EPA 6000/7000 Series Methods - Quality Control

Batch 5J12008 - EPA 7470A

Blank (5J12008-BLK1)

Prepared: 10/12/2015 08:24 Analyzed: 10/13/2015 10:28	
---	--

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Mercury	0.170	U	0.200	ug/L							_

LCS (5J12008-BS1) Prepared: 10/12/2015 08:24 Analyzed: 10/13/2015 10:31

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Mercury	4.50		0.200	ug/L	5.00		90	80-120			

Matrix Spike (5J12008-MS1)

Prepared: 10/12/2015 08:24 Analyzed: 10/13/2015 10:35

Source: C512353-03

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Mercury	3.91		0.200	ug/L	5.00	0.170 U	78	75-125			

Matrix Spike Dup (5J12008-MSD1)

Source: C512353-03

Prepared: 10/12/2015 08:24 Analyzed: 10/13/2015 10:42

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Mercury	3.96		0.200	ug/L	5.00	0.170 U	79	75-125	1	25	

Metals by EPA 6000/7000 Series Methods - Quality Control

Batch 5J12008 - EPA 7470A

Prepared: 10/12/2015 08:24 Analyzed: 10/13/2015 10:44

Post Spike (5J12008-PS1)

Source: C512353-03

Analyte	Result	Flag	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Mercury	4.21		0.200	ug/L	5.00	0.0370	83	75-125	•		

Metals (total recoverable) by EPA 6000/7000 Series Methods - Quality Control

Batch 5J08011 - EPA 3005A

Blank (5J08011-BLK1)

								-			
Analyte	Result	Flag	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Arsenic	6.80	U	10.0	ug/L							
Barium	1.00	U	10.0	ug/L							
Cadmium	0.360	U	1.00	ug/L							
Chromium	1.40	U	10.0	ug/L							
Lead	3.10	U	10.0	ug/L							
Selenium	5.00	U	10.0	ug/L							
Silver	1.90	U	10.0	ug/L							

LCS (5J08011-BS1)	Prepared: 10/08/2015 08:50 Analyzed: 10/12/2015 13:58												
Analyte	Result	Flag	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Arsenic	200		10.0	ug/L	200		100	80-120					
Barium	199		10.0	ug/L	200		99	80-120					
Cadmium	20.6		1.00	ug/L	20.0		103	80-120					
Chromium	199		10.0	ug/L	200		99	80-120					
Lead	202		10.0	ug/L	200		101	80-120					
Selenium	207		10.0	ug/L	200		104	80-120					
Silver	189		10.0	ug/L	200		94	80-120					

Matrix Spike (5J08011-MS1)

Source: C512353-02

Prepared: 10/08/2015 08:50 Analyzed: 10/12/2015 14:04

Prepared: 10/08/2015 08:50 Analyzed: 10/12/2015 14:15

Prepared: 10/08/2015 08:50 Analyzed: 10/12/2015 13:54

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Arsenic	197		10.0	ug/L	200	6.80 U	99	75-125			
Barium	394		10.0	ug/L	200	201	96	75-125			
Cadmium	19.9		1.00	ug/L	20.0	0.360 U	99	75-125			
Chromium	197		10.0	ug/L	200	1.40 U	99	75-125			
Lead	198		10.0	ug/L	200	3.10 U	99	75-125			
Selenium	201		10.0	ug/L	200	5.00 U	101	75-125			
Silver	186		10.0	ug/L	200	1.90 U	93	75-125			

Matrix Spike Dup (5J08011-MSD1)

Source: C512353-02

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Arsenic	198		10.0	ug/L	200	6.80 U	99	75-125	0.2	20	
Barium	378		10.0	ug/L	200	201	89	75-125	4	20	

Metals (total recoverable) by EPA 6000/7000 Series Methods - Quality Control

Batch 5J08011 - EPA 3005A

Matrix Spike Dup (5J08011-MSD1) Continued

Source: C512353-02

Prepared: 10/08/2015 08:50 Analyzed: 10/12/2015 14:15

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Cadmium	19.8		1.00	ug/L	20.0	0.360 U	99	75-125	0.4	20	
Chromium	192		10.0	ug/L	200	1.40 U	96	75-125	3	20	
Lead	199		10.0	ug/L	200	3.10 U	99	75-125	0.3	20	
Selenium	198		10.0	ug/L	200	5.00 U	99	75-125	2	20	
Silver	181		10.0	ug/L	200	1.90 U	91	75-125	3	20	

Post Spike (5J08011-PS1)

Source: C512353-02

Prepared: 10/08/2015 08:50 Analyzed: 10/12/2015 14:18

				Spike	Source		%REC		RPD	
Analyte	Result	Flag MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Arsenic	0.195	0.0100	mg/L	0.200	0.000622	97	80-120			
Barium	0.390	0.0100	mg/L	0.200	0.201	95	80-120			
Cadmium	0.0202	0.00100	mg/L	0.0200	-7.50E-5	101	80-120			
Chromium	0.195	0.0100	mg/L	0.200	0.000972	97	80-120			
Lead	0.203	0.0100	mg/L	0.200	0.00292	100	80-120			
Selenium	0.204	0.0100	mg/L	0.200	-0.00483	102	80-120			
Silver	0.181	0.0100	mg/L	0.200	-7.54E-5	90	80-120			

FLAGS/NOTES AND DEFINITIONS

B The analyte was detected in the associated method blank.

D The sample was analyzed at dilution.

J The reported value is between the laboratory method detection limit (MDL) and the laboratory method reporting limit (MRL), adjusted for actual sample preparation data and moisture content, where applicable.

U The analyte was analyzed for but not detected to the level shown, adjusted for actual sample preparation

data and moisture content, where applicable.

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate.

MRL Method Reporting Limit. The MRL is roughly equivalent to the practical quantitation limit (PQL) and is based on the low point of the calibration curve, when applicable, sample preparation factor, dilution factor, and, in the case of soil samples, moisture content.

Page 26 of 27

ENVIRONMENTAL CONSERVATION LABORATORIES CHAIN-OF-CUSTODY RECORD

www.encolabs.com

10775 Central Port Dr. Orlando, FL 32824

4810 Executive Park Court, Suite 111 Jacksonville, FL 32216-6069 (407) 826-5314 Fax (407) 850-6945 (904) 296-3007 Fax (904) 296-6210

102-A Woodwinds Industrial Ct. Cary, NC 27511 (919) 467-3090 Fax (919) 467-3515

	(407) 826-5	314 Fax (407) B	50-6945	(904) 296-3007	Fax (904) 296-62	10			(919) 46	7-3090 Fax	(919) 467-35	15		Page of
Client Name		Project Number	f.	10 10 10						Requested /	Analyses	-	1 1	Requested Turnaround
City of Greensboro (C10 Address 2503 White Street City/ST/Zip Greensboro, NC 27405 [el Fax (336) 373-4188 Sampler(s) Name, Affiliation (Print) GARY Signature Sampler(s) Signature		Reporting Con	Street Lar	ndfill.Appl.	(Phase I)	8260B Appendix 1	Ag, As, Ba, Cd, Cr, Pb, Se	Hg						Note: Rush requests subject to acceptance by the facility Standard Expedited Due// Lab Workorder C512355
tem # Sample ID (Field Identification)	Collection Date	Collection Time	Comp / Grab	Matrix (see codes)	Total # of Containers			Frese	WHIOH (See Codes)	Combine as n	ecessary)		Sample Comments
The second secon	10/4/15	1735	G	GW	Commencia	X	х	X						
4103-11	10/4/15	1850	G	GW	4	X	X	X						
4103-13	10/7/15	0840	G	GW	4	X	X	X						
4103-44	10/7/15	1045	G	GW	4	×	×	X					201	
	1.1												1	
				The same of										
	19													
Comments Special Reporting Requirements	9/24	Relinquis Relinquis	San	-	•	S Tota	Date/Tim		ers	Received F	iche	e C		Date/Time /0/7//5-/3:/5- Date/Time
		Relinquis	hed By				Date/Time	e		Received E	ly			Date/Time
		Geoler #1	8 Temps on Rec 124	eipt					2	.6%			Condition Up	pon Receipt Acceptable Unacceptable

Sample Preservation Verification

ENCO Cary

Work Order:

C512355

Project:

White Street Landfill Appl (Phase I)

Client:

City of Greensboro (CI034)

Project #:

[none]

Logged In:

07-Oct-15 13:45

Logged By:

Rachel Ann Yonish

C512355-01

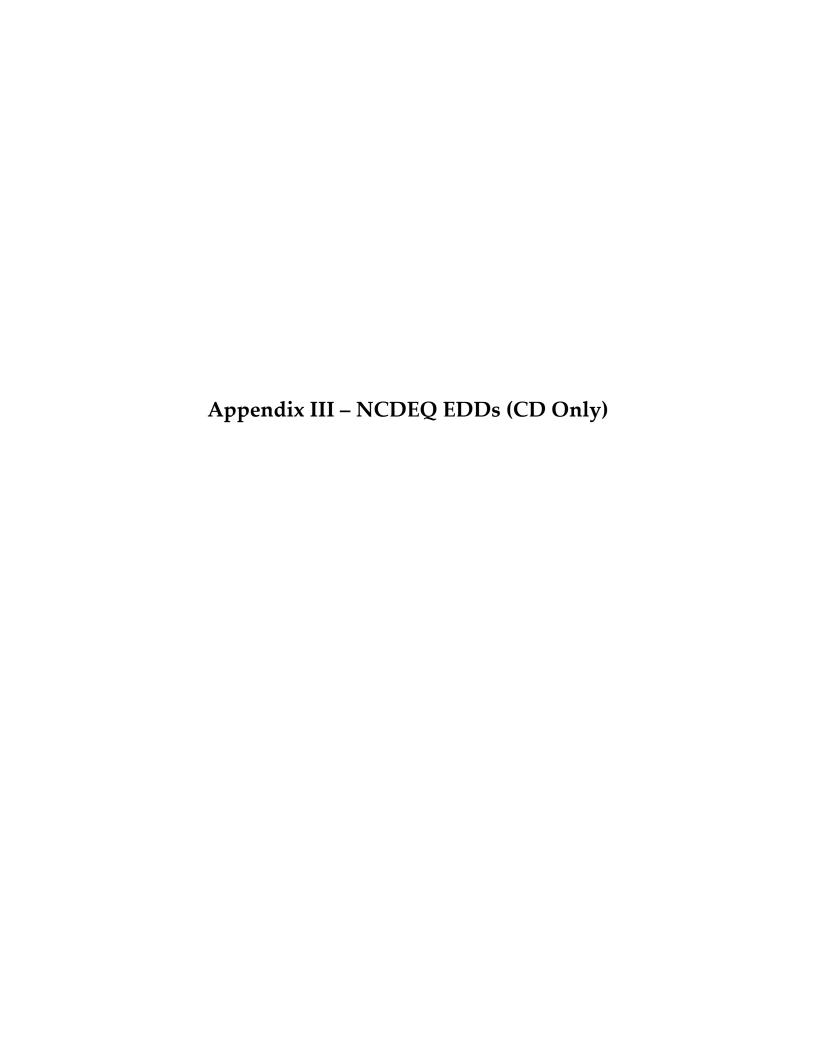
Cont	Туре	Pres (pH) Requirement	pH Checked / In Control	pH Adjusted	Date/Time Adjusted	Reagent Used/Comments
Α	250mLP+HNO3	<2	YNNA	Y (N) NA		

C512355-02

Cont	Туре	Pres (pH) Requirement	pH Checked / In Control	pH Adjusted	Date/Time Adjusted	Reagent Used/Comments
Α	250mLP+HNO3	<2	Y N / NA	Y (N) NA		

C512355-03

Cont	Туре	Pres (pH) Requirement	pH Checked / In Control	pH Adjusted	Date/Time Adjusted	Reagent Used/Comments
Α	250mLP+HNO3	<2	YNNA	Y /(N) NA		


C512355-04

Cont	Туре	Pres (pH) Requirement	pH Checked / In Control	pH Adjusted	Date/Time Adjusted	Reagent Used/Comments
Α	250mLP+HNO3	<2	YNNA	Y (N) NA		

Reag	ent Name	ID
1	*/	
2		

- 12	Reagent Name	ID
3	*	
4		

Re	agent Name	ID.
5	T .	
6		

